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1.5 Chapter 05.03 Newton’s Divided Difference Interpolation 
 
 
After reading this chapter, you should be able to: 
1. derive Newton’s divided difference method of interpolation, 
2. apply Newton’s divided difference method of interpolation, and 
3. apply Newton’s divided difference method interpolants to find derivatives and integrals. 

 

What is interpolation? 
Many times, data is given only at discrete points such as  ,, 00 yx   11, yx , ......,  11,  nn yx , 

 nn yx , .  So, how then does one find the value of y  at any other value of x ?  Well, a continuous 

function  xf  may be used to represent the 1n  data values with  xf  passing through the 
1n  points (Figure 1).  Then one can find the value of y  at any other value of x .  This is called 

interpolation.   
 Of course, if x  falls outside the range of x  for which the data is given, it is no longer 
interpolation but instead is called extrapolation.   
 So what kind of function  xf  should one choose?  A polynomial is a common choice 
for an interpolating function because polynomials are easy to  

(A) evaluate, 
(B) differentiate, and 
(C) integrate, 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n  that passes through 
the 1n  points.  One of the methods of interpolation is called Newton’s divided difference 
polynomial method.  Other methods include the direct method and the Lagrangian interpolation 
method.  We will discuss Newton’s divided difference polynomial method in this chapter. 
 

Newton’s Divided Difference Polynomial Method 
To illustrate this method, linear and quadratic interpolation is presented first.  Then, the general 
form of Newton’s divided difference polynomial method is presented.  To illustrate the general 
form, cubic interpolation is shown in Figure 1. 
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        Figure 1   Interpolation of discrete data. 
 
Linear Interpolation  
Given ),( 00 yx  and ),,( 11 yx  fit a linear interpolant through the data.  Noting )(xfy   and 

)( 11 xfy  , assume the linear interpolant )(1 xf  is given by (Figure 2)  

 )()( 0101 xxbbxf   

Since at 0xx  , 

 00010001 )()()( bxxbbxfxf   

and at 1xx  , 

 )()()( 0110111 xxbbxfxf   

                      )()( 0110 xxbxf   

giving 
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giving the linear interpolant as 
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         Figure 2   Linear interpolation. 

 

Example 1 
The upward velocity of a rocket is given as a function of time in Table 1 (Figure 3). 
 

Table 1  Velocity as a function of time. 
)s(  t  )m/s(  )(tv  

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 
 

Determine the value of the velocity at 16t  seconds using first order polynomial interpolation 
by Newton’s divided difference polynomial method.  

Solution 
For linear interpolation, the velocity is given by 
 )()( 010 ttbbtv   

Since we want to find the velocity at 16t , and we are using a first order polynomial, we need 
to choose the two data points that are closest to 16t  that also bracket 16t  to evaluate it.  
The two points are 15t  and 20t . 
Then 
 ,150 t 78.362)( 0 tv  

 ,201 t 35.517)( 1 tv  
gives 
 )( 00 tvb   

      78.362  

 00, yx

 11, yx

 xf1

x

y  
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
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Figure 3  Graph of velocity vs. time data for the rocket example. 
Hence 
 )()( 010 ttbbtv   

        ),15(914.3078.362  t  2015  t  
At ,16t  
 )1516(914.3078.362)16( v  
          m/s 69.393  
If we expand 
 ),15(914.3078.362)(  ttv  2015  t  
we get 
 ,914.3093.100)( ttv    2015  t  
and this is the same expression as obtained in the direct method. 

Quadratic Interpolation 
Given ),,( 00 yx  ),,( 11 yx  and ),,( 22 yx  fit a quadratic interpolant through the data.  Noting 

),(xfy   ),( 00 xfy   ),( 11 xfy   and ),( 22 xfy  assume the quadratic interpolant )(2 xf  is 

given by 
 ))(()()( 1020102 xxxxbxxbbxf   

At 0xx  , 

 ))(()()()( 100020010002 xxxxbxxbbxfxf   
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                       0b  

           )( 00 xfb   

At 1xx   

 ))(()()()( 110120110112 xxxxbxxbbxfxf   

            )()()( 01101 xxbxfxf   

giving 
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At 2xx   
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Hence the quadratic interpolant is given by 
 ))(()()( 1020102 xxxxbxxbbxf   
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        Figure 4   Quadratic interpolation. 

 

Example 2 
The upward velocity of a rocket is given as a function of time in Table 2. 
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 11, yx
 22 , yx  

 xf2  

y  

x  



6 
 

 
                                          Table 2  Velocity as a function of time. 

)s(  t  (m/s)  )(tv  

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
Determine the value of the velocity at 16t  seconds using second order polynomial 
interpolation using Newton’s divided difference polynomial method. 

Solution 
For quadratic interpolation, the velocity is given by 
 ))(()()( 102010 ttttbttbbtv   

Since we want to find the velocity at ,16t  and we are using a second order polynomial, we 
need to choose the three data points that are closest to 16t  that also bracket 16t  to evaluate 
it.  The three points are ,100 t  ,151 t  and 202 t . 

Then 
 ,100 t 04.227)( 0 tv  

 ,151 t  78.362)( 1 tv  

 ,202 t 35.517)( 2 tv  
gives 
 )( 00 tvb   

     04.227  
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





  

     
10

148.27914.30 
  

     37660.0  
Hence 
 ))(()()( 102010 ttttbttbbtv   
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        ),15)(10(37660.0)10(148.2704.227  ttt  2010  t  
At ,16t  
 )1516)(1016(37660.0)1016(148.2704.227)16( v  
                   m/s 19.392  
If we expand 
 ),15)(10(37660.0)10(148.2704.227)(  ttttv  2010  t  
we get 
 237660.0733.1705.12)( tttv  , 2010  t  
This is the same expression obtained by the direct method. 
 

General Form of Newton’s Divided Difference Polynomial 
In the two previous cases, we found linear and quadratic interpolants for Newton’s divided 
difference method.  Let us revisit the quadratic polynomial interpolant formula 
 ))(()()( 1020102 xxxxbxxbbxf   

where 
 )( 00 xfb   
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Note that ,0b ,1b  and 2b  are finite divided differences. ,0b ,1b and 2b  are the first, second, and 

third finite divided differences, respectively.  We denote the first divided difference by 
 )(][ 00 xfxf   

the second divided difference by 
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and the third divided difference by 
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where ],[ 0xf ],,[ 01 xxf  and ],,[ 012 xxxf  are called bracketed functions of their variables 

enclosed in square brackets. 
Rewriting, 
 ))(](,,[)](,[][)( 1001200102 xxxxxxxfxxxxfxfxf   

This leads us to writing the general form of the Newton’s divided difference polynomial for 
1n  data points,        nnnn yxyxyxyx ,,,,......,,,, 111100  , as 
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 ))...()((....)()( 110010  nnn xxxxxxbxxbbxf  

where 
 ][ 00 xfb   

 ],[ 011 xxfb   

 ],,[ 0122 xxxfb   

          
 ],....,,[ 0211 xxxfb nnn    

 ],....,,[ 01 xxxfb nnn   

where the definition of the thm  divided difference is 
 ],........,[ 0xxfb mm   

      
0

011 ],........,[],........,[

xx

xxfxxf

m

mm




   

From the above definition, it can be seen that the divided differences are calculated recursively.   
For an example of a third order polynomial, given ),,( 00 yx  ),,( 11 yx  ),,( 22 yx  and ),,( 33 yx  

))()(](,,,[

))(](,,[)](,[][)(

2100123

1001200103

xxxxxxxxxxf

xxxxxxxfxxxxfxfxf




 

 

 
          
           Figure 5   Table of divided differences for a cubic polynomial. 
 

Example 3 
The upward velocity of a rocket is given as a function of time in Table 3. 
 
                                          Table 3  Velocity as a function of time. 

(s)  t  (m/s)  )(tv  

0 0 
10 227.04 
15 362.78 

 00 xfx

0b

 11 xfx  

 22 xfx

 33 xfx  

1b

2b  

3b   01, xxf

 12 , xxf

 23 , xxf

 012 ,, xxxf

 123 ,, xxxf  

 0123 ,,, xxxxf
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20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16t  seconds with third order polynomial 
interpolation using Newton’s divided difference polynomial method. 
b) Using the third order polynomial interpolant for velocity, find the distance covered by the 
rocket from s 11t  to s 16t . 
c) Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at 

s 16t . 

Solution 
a) For a third order polynomial, the velocity is given by 
 ))()(())(()()( 2103102010 ttttttbttttbttbbtv   

Since we want to find the velocity at ,16t and we are using a third order polynomial, we need 
to choose the four data points that are closest to 16t  that also bracket 16t  to evaluate it.  
The four data points are ,100 t  ,151 t  ,202 t  and 5.223 t . 

Then 
 ,100 t    04.227)( 0 tv  

 ,151 t     78.362)( 1 tv  

 ,202 t    35.517)( 2 tv  

 ,5.223 t 97.602)( 3 tv  

gives 
 ][ 00 tvb   

          )( 0tv  

     04.227  
],[ 011 ttvb    

          
01

01 )()(

tt

tvtv




  

     
1015

04.22778.362




  

                148.27  
],,[ 0122 tttvb   
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
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


  

   914.30  
148.27],[ 01 ttv  
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02
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148.27914.30




  

     37660.0  
],,,[ 01233 ttttvb   
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


  

13

1223
123

],[],[
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ttvttv
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


  
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

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205.22

35.51797.602




  

  248.34  
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

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1520

78.36235.517




  

   914.30  

13
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123

],[],[
],,[

tt

ttvttv
tttv




  

       
155.22

914.30248.34




  

       44453.0  
37660.0],,[ 012 tttv  

      
03

012123
3

],,[],,[

tt

tttvtttv
b




  

          
105.22

37660.044453.0




  

          3104347.5   
Hence 
 ))()(())(()()( 2103102010 ttttttbttttbttbbtv   

        
)20)(15)(10(105347.5

)15)(10(37660.0)10(148.2704.227
3 


 ttt

ttt
 

At ,16t  

 
)2016)(1516)(1016(105347.5

)1516)(1016(37660.0)1016(148.2704.227)16(
3 




v
 

          m/s 06.392  
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b) The distance covered by the rocket between s 11t  and s 16t  can be calculated from the 
interpolating polynomial 

 
)20)(15)(10(105347.5

)15)(10(37660.0)10(148.2704.227)(
3 


 ttt

ttttv
  

                  ,0054347.013204.0265.212541.4 32 ttt   5.2210  t  
Note that the polynomial is valid between 10t  and 22.5t  and hence includes the limits of 

11t  and 16t . 
So 

      
16

11

1116 dttvss  

          dtttt )0054347.013204.0265.212541.4( 32
16

11

   

                    
16

11

432

4
0054347.0

3
13204.0

2
265.212541.4 










ttt
t  

           m 1605  
c) The acceleration at 16t  is given by 

  16)()16(  ttv
dt

d
a  

     )()( tv
dt

d
ta   

                    32 0054347.013204.0265.212541.4 ttt
dt

d
  

                   2016304.026408.0265.21 tt   
  2)16(016304.0)16(26408.0265.21)16( a  

                      2m/s 664.29  
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Multiple-Choice Test Chapter 05.03 Newton’s Divided Difference Polynomial Method 
 
1. If a polynomial of degree n  has 1n  zeros, then the polynomial is 

(A) oscillatory 
(B) zero everywhere 
(C) quadratic 
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(D) not defined 
 
2. The following yx,  data is given. 

x  15 18 22 
y  24 37 25 

 The Newton’s divided difference second order polynomial for the above data is given 
 by 
      181515)( 2102  xxbxbbxf  

 The value of 1b is most nearly 
(A) –1.0480 
(B) 0.14333 
(C) 4.3333 
(D) 24.000 

 
3. The polynomial that passes through the following yx,  data 

x  18 22 24 
y  ? 25 123 

 is given by 
  ,323775.324125.8 2  xx    2418  x  
 The corresponding polynomial using Newton’s divided difference polynomial is  given 
by 
      221818)( 2102  xxbxbbxf  

 The value of 2b  is most nearly 
(E) 0.25000 
(F) 8.1250 
(G) 24.000 
(H) not obtainable with the information given 

 
4. Velocity vs. time data for a body is approximated by a second order Newton’s divided 
difference polynomial as 
 
        ,15205540.020622.390  tttbtv    2010  t  

       The acceleration in 2m/s  at 15t  is 
(I) 0.5540 
(J) 39.622 
(K) 36.852 
(L) not obtainable with the given information 

 
5. The path that a robot is following on a yx   plane is found by interpolating the following four 
data points as 

x  2 4.5 5.5 7 
y  7.5 7.5 6 5 

     900.3605.9257.21524.0 23  xxxxy  
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 The length of the path from 2x  to 7x  is 
 

(M)            222222 5.57655.45.55.7625.45.75.7   

(N) dxxxx 
7

2

223 )900.3605.9257.21524.0(1  

(O) dxxx 
7

2

22 )605.9514.44572.0(1  

(P) dxxxx 
7

2

23 )900.3605.9257.21524.0(  

 
7. The following data of the velocity of a body is given as a function of time. 

Time (s) 0 15 18 22 24 
Velocity (m/s) 22 24 37 25 123 

 If you were going to use quadratic interpolation to find the value of the velocity at 
 9.14t  seconds, the three data points of time you would choose for interpolation are 

(Q) 0, 15, 18 
(R) 15, 18, 22 
(S) 0, 15, 22 
(T) 0, 18, 24 

 
For a complete solution, refer to the links at the end of the book. 
 
 
 
 
 

 

Newton’s Divided Difference Interpolation – More Examples Chemical Engineering 
 

Example 1 
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to 
calculate the specific heat of water at C61 . The specific heat of water is given as a  function of 
time in Table 1.  
 

Table 1  Specific heat of water as a function of temperature. 
Temperature, T  

 C  
Specific heat, pC  

 







 Ckg

J
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22 
42 
52 
82 
100 

4181 
4179 
4186 
4199 
4217 

 

 
 

Figure 1  Specific heat of water vs. temperature. 
 
Determine the value of the specific heat at C61T  using Newton’s divided difference method 
of interpolation and a first order polynomial. 
 

Solution 
For linear interpolation, the specific heat is given by 
 )()( 010 TTbbTC p   

Since we want to find the velocity at C61T , and we are using a first order polynomial we 
need to choose the two data points that are closest to C61T  that also bracket C61T  to 
evaluate it. The two points are 52T  and 82T . 
Then 
 ,520 T  4186)( 0 TC p  

 ,821 T   4199)( 1 TC p  

gives 
 )( 00 TCb p  

      4186  
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01

01
1

)()(

TT

TCTC
b pp




  

      
5282

41864199




  

      43333.0  
Hence 

)()( 010 TTbbTC p   

            ),52(43333.04186  T  8252  T  
At 61T , 

)5261(43333.04186)61( pC  

            
Ckg

J
9.4189


  

If we expand 
 ),52(43333.04186)(  TTC p  8252  T  

we get 
 ,43333.05.4163)( TTC p     8252  T  

and this is the same expression as obtained in the direct method. 
 

Example 2 
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to 
calculate the specific heat of water at C61 . The specific heat of water is given as a function of 
time in Table 2.  
 

Table 2  Specific heat of water as a function of temperature. 
Temperature, T  

 C  
Specific heat, pC  

 







 Ckg

J
 

22 
42 
52 
82 
100 

4181 
4179 
4186 
4199 
4217 

 
Determine the value of the specific heat at C61T  using Newton’s divided difference method 
of interpolation and a second order polynomial. Find the absolute relative approximate error for 
the second order polynomial approximation. 

 

Solution 
For quadric interpolation, the specific heat is given by 
 ))(()()( 102010 TTTTbTTbbTC p   
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Since we want to find the specific heat at C61T , and we are using a second order 
polynomial, we need to choose the three data points that are closest to C16 T  that also 

bracket C61T  to evaluate it. The three points are ,420 T  ,521 T  and 822 T . 

Then 
 ,420 T  4179)( 0 TC p  

 ,521 T  4186)( 1 TC p  

 ,822 T  4199)( 2 TC p  

gives 
 )( 00 TCb p  

      4179  

 
01

01
1

)()(

TT

TCTC
b pp




  

      
4252

41794186




  

      7.0  

 
02

01

01

12

12

2

)()()()(

TT

TT

TCTC

TT

TCTC

b

pppp











  

      
4282

4252

41794186

5282

41864199









  

      
40

7.043333.0 
  

      3106667.6   
Hence 
 ))(()()( 102010 TTTTbTTbbTC p   

           ),52)(42(106667.6)42(7.04179 3   TTT              8242  T  
At ,61T  

 )5261)(4261(106667.6)4261(7.04179)61( 3  
pC  

  
Ckg

J
2.4191


  

The absolute relative approximate error a  obtained between the results from the first and 

second order polynomial is 

100
2.4191

9.41892.4191



a  

        %030063.0  
If we expand 

 ),52)(42(106667.6)42(7.04179)( 3   TTTTC p  8242  T  

we get 
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   ,106667.63267.10.4135 23TTTC p
    8242  T  

This is the same expression obtained by the direct method. 
 

Example 3 
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to 
calculate the specific heat of water at C61 . The specific heat of water is given as a function of 
time in Table 3.  
 

Table 3  Specific heat of water as a function of temperature. 
Temperature, T  

 C  
Specific heat, pC  

 







 Ckg

J
 

22 
42 
52 
82 
100 

4181 
4179 
4186 
4199 
4217 

 
Determine the value of the specific heat at C 61T  using Newton’s divided difference method 
of interpolation and a third order polynomial. Find the absolute relative approximate error for the 
third order polynomial approximation. 
 

Solution 
For a third order polynomial, the specific heat profile is given by 
 ))()(())(()()( 2103102010 TTTTTTbTTTTbTTbbTC p   

Since we want to find the specific heat at C61T , and we are using a third order polynomial, 
we need to choose the four data points that are closest to C61T  that also bracket C61T . 

The four data points are ,420 T  ,521 T  822 T  and 1003 T . 

(Choosing the four points as 220 T , 421 T , 522 T  and 823 T  is equally valid.) 

 ,420 T    4179)( 0 TC p  

 ,521 T     4186)( 1 TC p  

 ,822 T    4199)( 2 TC p  

 ,1003 T   4217)( 3 TC p  

then 
][ 00 TCb p  

      )( 0TC p  

      4179  
             ],[ 011 TTCb p   
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01

01 )()(

TT

TCTC pp




  

      
4252

41794186




  

      7.0  
 ],,[ 0122 TTTCb p  

      
02

0112 ],[],[

TT

TTCTTC pp




  

12

12
12

)()(
],[

TT

TCTC
TTC pp

p 


  

      
5282

41864199




  

      43333.0  

 7.0],[ 01 TTC p  

 

02

0112
2

],[],[

TT

TTCTTC
b pp




  

          
4282

7.043333.0




  

      3106667.6   
 
             01233 ,,, TTTTCb p  

                
03

012123 ],,[],,[

TT

TTTCTTTC pp




  

  
13

1223
123

],[],[
],,[

TT

TTCTTC
TTTC pp

p 


  

 
23

23
23

)()(
],[

TT

TCTC
TTC pp

p 


  

       
82100

41994217




  

       1  

      
12

12
12

)()(
],[

TT

TCTC
TTC pp

p 


  

      
5282

41864199




  

      43333.0  

13

1223
123

],[],[
],,[

TT

TTCTTC
TTTC pp

p 



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52100

43333.01




  

            011806.0  
 3

012 106667.6],,[ TTTC p  

 ],,,[ 01233 TTTTCb p  

                
03

012123 ],,[],,[

TT

TTTCTTTC pp




  

              
42100

106667.6011806.0 3







 

      4101849.3   
Hence 

))()(())(()()( 2103102010 TTTTTTbTTTTbTTbbTC p   

            
10042      ),82)(52)(42(101849.3

)52)(42(106667.6)42(7.04179
4

3








TTTT

TTT
 

At ,61T  

  
)8261)(5261)(4261(101849.3

)5261)(4261(106667.6)4261(7.04179)61(
4

3







pC

 

  
Ckg

J
0.4190


  

The absolute relative approximate error a  obtained between the results from the second and 

third order polynomial is 

100
0.4190

2.41910.4190



a  

        %027295.0  
If we expand 

 )52)(42(106667.6)42(7.04179)( 3   TTTTC p  

                          10042                ),82)(52)(42(101849.3 4   TTTT  
we get 
            10042,101849.306272.04771.40.4078)( 342   TTTTTC p  

This is the same expression as obtained in the direct method. 
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Web Site http://numericalmethods.eng.usf.edu 
 
 
 
 
 
 
 
1.6 Chapter 05.04 Lagrangian Interpolation 
 
After reading this chapter, you should be able to: 

1. derive Lagrangian method of interpolation, 
2. solve problems using Lagrangian method of interpolation, and 
3. use Lagrangian interpolants to find derivatives and integrals of discrete functions. 

 

What is interpolation? 
Many times, data is given only at discrete points such as  ,, 00 yx   11, yx , ......,  11,  nn yx , 

 nn yx , .  So, how then does one find the value of y  at any other value of x ?  Well, a continuous 

function  xf  may be used to represent the 1n  data values with  xf  passing through the 
1n  points (Figure 1).  Then one can find the value of y  at any other value of x .  This is called 

interpolation.   
 Of course, if x  falls outside the range of x  for which the data is given, it is no longer 
interpolation but instead is called extrapolation.   
 So what kind of function  xf  should one choose?  A polynomial is a common choice 
for an interpolating function because polynomials are easy to  

(D) evaluate, 
(E) differentiate, and 
(F) integrate, 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n  that passes through 
the 1n  data points.  One of the methods used to find this polynomial is called the Lagrangian 
method of interpolation.  Other methods include Newton’s divided difference polynomial 
method and the direct method.  We discuss the Lagrangian method in this chapter. 
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        Figure 1   Interpolation of discrete data. 
 
 
The Lagrangian interpolating polynomial is given by 

 



n

i
iin xfxLxf

0

)()()(  

where n  in )(xfn  stands for the thn  order polynomial that approximates the function )(xfy   

given at 1n  data points as        nnnn yxyxyxyx ,,,,......,,,, 111100  , and 

 

 




n

ij
j ji

j
i xx

xx
xL

0

)(  

)(xLi  is a weighting function that includes a product of 1n  terms with terms of ij   omitted.  

The application of Lagrangian interpolation will be clarified using an example. 
 

Example 1 
The upward velocity of a rocket is given as a function of time in Table 1. 
                  

Table 1  Velocity as a function of time. 
t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 

 00, yx  

 11, yx

 22 , yx  

 33, yx

 xf  

x  

y  
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Determine the value of the velocity at 16t  seconds using a first order Lagrange polynomial.  

Solution 
For first order polynomial interpolation (also called linear interpolation), the velocity is given by 

 



1

0

)()()(
i

ii tvtLtv  

               )()()()( 1100 tvtLtvtL   

 

 
         Figure 3   Linear interpolation. 

 

 
Figure 2   Graph of velocity vs. time data for the rocket example. 
 

 00, yx

 11, yx

 xf1

x

y  
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Since we want to find the velocity at 16t , and we are using a first order polynomial, we need 
to choose the two data points that are closest to 16t  that also bracket 16t  to evaluate it.  
The two points are 150 t  and 201 t . 

Then 
   78.362  ,15 00  tvt  

   35.517  ,20 11  tvt  
gives 

 

 




1

0
0 0

0 )(

j
j j

j

tt

tt
tL  

           
10

1

tt

tt




  

 

 




1

1
0 1

1 )(

j
j j

j

tt

tt
tL  

                  
01

0

tt

tt




  

Hence 

   )()()( 1
01

0
0

10

1 tv
tt

tt
tv

tt

tt
tv








  

                    2015    ),35.517(
1520

15
)78.362(

2015

20









 t
tt

 

 )35.517(
1520

1516
)78.362(

2015

2016
)16(








v  

                   )35.517(2.0)78.362(8.0   
                   m/s 69.393  
You can see that 8.0)(0 tL  and 2.0)(1 tL  are like weightages given to the velocities at 15t  

and 20t  to calculate the velocity at 16t . 
 

Quadratic Interpolation 
 



24 
 

 
        Figure 4   Quadratic interpolation. 

Example 2 
The upward velocity of a rocket is given as a function of time in Table 2. 
                                      

 Table 2   Velocity as a function of time. 
t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16t  seconds with second order polynomial 
interpolation using Lagrangian polynomial interpolation.   
b) Find the absolute relative approximate error for the second order polynomial 
approximation. 

Solution 
a) For second order polynomial interpolation (also called quadratic interpolation), the velocity is 
given by 

 



2

0

)()()(
i

ii tvtLtv  

        )()()()()()( 221100 tvtLtvtLtvtL   

Since we want to find the velocity at 16t , and we are using a second order polynomial, we 
need to choose the three data points that are closest to 16t  that also bracket 16t  to evaluate 
it.  The three points are 20  and  ,15  ,10 210  ttt . 

Then 
   04.227,10 00  tvt  

 00 , yx  

 11, yx
 22 , yx  

 xf2  

y  

x  
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   78.362,15 11  tvt  

   35.517,20 22  tvt  
gives 

 

 




2

0
0 0

0 )(

j
j j

j

tt

tt
tL  

                   






















20

2

10

1

tt

tt

tt

tt
 

 

 




2

1
0 1

1 )(

j
j j

j

tt

tt
tL  

          






















21

2

01

0

tt

tt

tt

tt
 

 

 




2

2
0 2

2 )(

j
j j

j

tt

tt
tL  

          






















12

1

02

0

tt

tt

tt

tt
 

Hence 

202
12

1

02

0
1

21

2

01

0
0

20

2

10

1   ),()()()( ttttv
tt

tt

tt

tt
tv

tt

tt

tt

tt
tv

tt

tt

tt

tt
tv 


































































  

 

)35.517(
)1520)(1020(

)1516)(1016(

)78.362(
)2015)(1015(

)2016)(1016(
)04.227(

)2010)(1510(

)2016)(1516(
)16(













v

 

          )35.517)(12.0()78.362)(96.0()04.227)(08.0(   
          m/s 19.392  
b) The absolute relative approximate error a  for the second order polynomial is calculated by 

considering the result of the first order polynomial (Example 1) as the previous approximation. 

 100
19.392

69.39319.392



a  

        %38410.0  
 

Example 3 
The upward velocity of a rocket is given as a function of time in Table 3. 
 
                                           Table 3   Velocity as a function of time 

t  (s) )(tv  (m/s) 

0 0 
10 227.04 
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15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
a) Determine the value of the velocity at 16t  seconds using third order Lagrangian polynomial 
interpolation.  
b) Find the absolute relative approximate error for the third order polynomial approximation. 
c) Using the third order polynomial interpolant for velocity, find the distance covered by the 
rocket from s 11t  to s 16t . 
d) Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at 

s 16t . 

 

Solution 
a) For third order polynomial interpolation (also called cubic interpolation), the velocity is given 
by 

 



3

0

)()()(
i

ii tvtLtv  

       )()()()()()()()( 33221100 tvtLtvtLtvtLtvtL   

 

        Figure 5   Cubic interpolation. 
 
Since we want to find the velocity at 16t , and we are using a third order polynomial, we need 
to choose the four data points closest to 16t  that also bracket 16t  to evaluate it. The four 
points are 20  ,15  ,10 210  ttt  and 5.223 t . 

Then 
   04.227,10 00  tvt  

 00, yx  

 11, yx

 22 , yx  

 33, yx

 xf3  

x  

y  
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   78.362,15 11  tvt  

   35.517,20 22  tvt  

   97.602,5.22 33  tvt  

gives 

 

 




3

0
0 0

0 )(

j
j j

j

tt

tt
tL  

          

































30

3

20

2

10

1

tt

tt

tt

tt

tt

tt
 

 

 




3

1
0 1

1 )(

j
j j

j

tt

tt
tL  

          

































31

3

21

2

01

0

tt

tt

tt

tt

tt

tt
 

 

 




3

2
0 2

2 )(

j
j j

j

tt

tt
tL  

          

































32

3

12

1

02

0

tt

tt

tt

tt

tt

tt
 

 

 




3

3
0 3

3 )(

j
j j

j

tt

tt
tL  

          

































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2

13

1
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0
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Hence  
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23

2

13

1
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0
2
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3
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1

02

0

1
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b) The absolute percentage relative approximate error, a  for the value obtained for )16(v  can 

be obtained by comparing the result with that obtained using the second order polynomial 
(Example 2) 

 100
06.392

19.39206.392



a  

       %033269.0  
c) The distance covered by the rocket between s 11t  to s 16t  can be calculated from the 
interpolating polynomial as 
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Note that the polynomial is valid between 10t  and 5.22t  and hence includes the limits of 

11t  and 16t . 
So 
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d) The acceleration at 16t  is given by 

    
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


t
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d
a  

Given that  
 32 00544.013195.0265.21245.4)( ttttv  , 5.2210  t  

    tv
dt

d
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                   32 00544.013195.0265.21245.4 ttt
dt

d
  

        201632.026390.0265.21 tt  , 5.2210  t  
 2)16(01632.0)16(26390.0265.21)16( a  

          2m/s 665.29  
Note: There is no need to get the simplified third order polynomial expression to conduct the 
differentiation.  An expression of the form 
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gives the derivative without expansion as 
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Multiple-Choice Test Chapter 05.04 Lagrange Method of Interpolation 
 
1. A unique polynomial of degree ______________ passes through 1n  data points. 

(A) 1n        (B) n             (C) n  or less     (D) 1n  or less 
 
2. Given the two points      bfbafa ,,, , the linear Lagrange polynomial  xf1  that passes 
through these two points is given by 

(A)      bf
ba

ax
af

ba

bx
xf








1      (B)      bf
ab

x
af

ab

x
xf





1    

(C)          ab
ab

afbf
afxf 




1     (D)      bf
ab

ax
af

ba

bx
xf








1  

 
3. The Lagrange polynomial that passes through the 3 data points is given by 
 

x  15 18 22 
y  24 37 25 

 
            253724 2102 xLxLxLxf   

 The value of  xL1  at 16x  is most nearly 
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(A) –0.071430    (B) 0.50000    (C) 0.57143     (D) 4.3333 
 
4. The following data of the velocity of a body is given as a function of time. 
 

Time ( s ) 10 15 18 22 24 
Velocity ( sm ) 22 24 37 25 123 

 
A quadratic Lagrange interpolant is found using three data points, 15t , 18 and 22.  From this 

information, at what of the times given in seconds is the velocity of the body m/s 26  during 
the time interval of 15t  to 22t  seconds. 

(A) 20.173     (B) 21.858      (C) 21.667      (D) 22.020 
 
5. The path that a robot is following on a yx,  plane is found by interpolating four data points as 
 

x  2 4.5 5.5 7 
y  7.5 7.5 6 5 

 
    9000.36048.92571.215238.0 23  xxxxy  
 The length of the path from 2x  to 7x  is 

(A)            222222 5.57655.45.55.7625.45.75.7   

(B) dxxxx 
7

2

223 )9000.36048.92571.215238.0(1   

(C) dxxx 
7

2

22 )6048.95142.445714.0(1  

(D) dxxxx 
7

2

23 )9000.36048.92571.215238.0(  

6. The following data of the velocity of a body is given as a function of time. 
Time (s) 0 15 18 22 24 
Velocity (m/s) 22 24 37 25 123 

 If you were going to use quadratic interpolation to find the value of the velocity at 
 9.14t  seconds, what three data points of time would you choose for interpolation? 

(A) 0, 15, 18    (B) 15, 18, 22        (C) 0, 15, 22     (D) 0, 18, 24 
 

For a complete solution, refer to the links at the end of the book. 
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1.7 Chapter 05.05 Spline Method of Interpolation 
 
After reading this chapter, you should be able to: 

1. interpolate data using spline interpolation, and 
2. understand why spline interpolation is important. 

 

What is interpolation? 
Many times, data is given only at discrete points such as  ,, 00 yx   11, yx , ......,  11,  nn yx , 

 nn yx , .  So, how then does one find the value of y  at any other value of x ?  Well, a continuous 

function  xf  may be used to represent the 1n  data values with  xf  passing through the 
1n  points (Figure 1).  Then one can find the value of y  at any other value of x .  This is called 

interpolation.  (çoğu zaman veriler (x0, y0), (x1, y1), …., (xn-1, yn-1), (xn, yn) kesikli noktalar 
şeklindedir. Bu durumda herhangi bir x değerine karşılık gelecek olan y nasıl elde edilir. F(x) 
şeklindeki sürekli bir fonksiyonu n+1 noktanın hepsinden geçirilebilir (Şekil 1). Böylelikle 
herhangi bir x değerine karşılık gelen y değeri bulunabilir. Buna interpolasyo demiştik.)  
 Of course, if x  falls outside the range of x  for which the data is given, it is no longer 
interpolation but instead is called extrapolation. x değeri sınırlar dışında kalıyorsa interpolasyon 
yerine extraolasyon ifadesini kullanabiliriz.  
 So what kind of function  xf  should one choose?  A polynomial is a common choice 
for an interpolating function because polynomials are easy to (f(x) nasıl olmalıdır? Polinom 
interpolasyon fonksiyonu f(x) için polinomlar trigonometrik ve üstel serilere göre daha 
kullanışlıdır: ) 

(A) evaluate, (geliştirilebilir) 
(B) differentiate, and (türevlenebilir) 
(C) integrate (toplanabilir/integre edilebilir) 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n  that passes through 
the 1n  points.  Several methods to obtain such a polynomial include the direct method, 
Newton’s divided difference polynomial method and the Lagrangian interpolation method. 
(polinomiyal interpolasyon n. dereceden ve n+1 veri noktasından geçen polinomdur. Bu tür 
polinomları elde edebilmek için doğrudan, Newton bölümlü fark veya Lagrangian polinom 
yöntemleri kullanılabilir.)  
 So is the spline method yet another method of obtaining this thn  order polynomial. …… 
NO!  Actually, when n  becomes large, in many cases, one may get oscillatory behavior in the 
resulting polynomial.  This was shown by Runge when he interpolated data based on a simple 
function of (Spline yöntemi n.dereceden polinom elde edebilmek için kullanılabilecek bir 
yöntemdir. Burada dikkat edilmesi gereken şey n derecesi büyüdükçe polinomdan elde edilen 
değerlerin osilasyon yapmaktadır. Bu osilasyon Runge tarafından aşağıdaki fonksiyondan elde 
edilen değerler kullanılarak gösterilmiştir. Bu fonksiyondan [-1, 1] aralığında elde edilmiş 6 
değeri kullanılır ve bu değerlere uygun interpolasyon polinomu elde edilmeya çalışılılırsa.) 

 
2251

1

x
y


  

on an interval of [–1, 1].  For example, take six equidistantly spaced points in [–1, 1] and find y  
at these points as given in Table 1.  
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        Figure 1   Interpolation of discrete data. 
  

Table 1  Six equidistantly spaced points in [–1, 1]. 
 
 
 
 
 
 
 
 
 
 
 
 Now through these six points, one can pass a fifth order polynomial 

,106731.5100004.17308.1103651.32019.1101378.3)( 11123114511
5

  xxxxxxf

 11  x  
through the six data points.  On plotting the fifth order polynomial (Figure 2) and the original 
function, one can see that the two do not match well.  One may consider choosing more points in 
the interval [–1, 1] to get a better match, but it diverges even more (see Figure 3), where 20 
equidistant points were chosen in the interval [–1, 1] to draw a 19th order polynomial.  In fact, 
Runge found that as the order of the polynomial becomes infinite, the polynomial diverges in the 
interval of 726.01  x  and 1726.0  x . (5.dereceden bir polinom yukarıdaki veri 
noktalarından geçmektedir. Bu 5. dereceden polinom kullanılarak veri noktalarından geçen bir 
grafik çizilecek olursa Şekil 2 deki gibi bir grafik elde edilir. Şekilden görüleceği gibi polinom 
verilere uygun değildir. ) 

x  
2251

1

x
y


  

–1.0 0.038461 
–0.6 0.1 
–0.2 0.5 
0.2 0.5 
0.6 0.1 
1.0 0.038461 

 00, yx  

 11, yx

 22 , yx  

 33, yx

 xf  

x  

y  
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 So what is the answer to using information from more data points, but at the same time 
keeping the function true to the data behavior?  The answer is in spline interpolation.  The most 
common spline interpolations used are linear, quadratic, and cubic splines. 
 

Figure 2   5th order polynomial interpolation with six equidistant points. 
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5th Order Polynomial Function 1/(1+25*x^2)

19th Order Polynomial 12th Order Polynomial

 
Figure 3   Higher order polynomial interpolation is a bad idea. 
 
Linear Spline Interpolation (çizgisel spline interpolasyonu) 
Given       nnnn yxyxyxyx ,,,......,,,, 111100  , fit linear splines (Figure 4) to the data.  This 

simply involves forming the consecutive data through straight lines.  So if the above data is 
given in an ascending order, the linear splines are given by )( ii xfy  . ((x0,y0), x1,y1), (x2,y2), 

...., (xn-1,yn-1), (xn,yn) veriler Şekil 4’deki gibi çizgisel spline’lara fit edilmektedir. Bu ardışık 
verilerin birbirleri ile çizgisel olarak birleştirilmesi işlemidir. Veriler artan sırada verilirse 
çizgisel spline yi=f(xi) şeklindedir.) 

 
Figure 4   Linear splines. 

(x0, y0) 

(x1, y1) 
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Note the terms of 

 
1

1 )()(








ii

ii

xx

xfxf
 

in the above function are simply slopes between 1ix  and ix . 

Example 1 
The upward velocity of a rocket is given as a function of time in Table 2 (Figure 5). 

Table 2  Velocity as a function of time. 
t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 

 
Figure 5   Graph of velocity vs. time data for the rocket example. 
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Determine the value of the velocity at 16t  seconds using linear splines.  

Solution 
Since we want to evaluate the velocity at 16t , and we are using linear splines, we need to 
choose the two data points closest to 16t  that also bracket 16t  to evaluate it.  The two 
points are 150 t  and 201 t . 

Then 
 ,150 t  78.362)( 0 tv       ,201 t  35.517)( 1 tv  

gives 

 )(
)()(

)()( 0
01

01
0 tt

tt

tvtv
tvtv 




  

        )15(
1520

78.36235.517
78.362 




 t  

 )15(913.3078.362  t , 2015  t  
At ,16t  
 )1516(913.3078.362)16( v m/s7.393  
Linear spline interpolation is no different from linear polynomial interpolation. Linear splines 
still use data only from the two consecutive data points. Also at the interior points of the data, the 
slope changes abruptly. This means that the first derivative is not continuous at these points. So 
how do we improve on this? We can do so by using quadratic splines. 
 
Spline kelimesi eğrilebilen, değişik şekillere sokulabilen çubuk veya dal anlamında 
kullanılmaktadır. Sayısal uygulamalarda bir veri grubunda veriler arasında yumuşak geçiş 
sağlayan fonksiyonlar olarak tanımlanabilir. N nci dereceden bir spline için N+1 tane veri 
noktasına ihtiyaç vardır. Burada N=1 için çizgisel, N=2 için kare ve N=3 için kübik spline 
fonksiyonları (2nci ve 3ncü dereceden polinomlar) ele alınacaktır. 
 
Veriler için v(t)=a1+b1t çizgisel fonksiyonu önerelim. 6 tane veri varsa 5 aralık/bölme vardır. her 
bölme için bu çizgisel denklemi yazarsak aşağıdaki çizelgeki değerler elde edilir. 6 veri varsa 12 
bilinmeyen vardır. 12 tane denklem oluşturulursa bu veri grubu için birbiri ile uyumlu spline 
eğrileri elde edilir.  
 

 
 

i t  (s) )(tv  (m/s) 

 
1 0 0.00 

1.aralık v(1)(t)=a1
(1)+b1

(1)t 

2 10 227.04 

2.aralık v(2)(t)=a1
(2)+b1

(2)t 
3 15 362.78 

3.aralık v(3)(t)=a1
(3)+b1

(3)t 
4 20 517.35 

4.aralık v(4)(t)=a1
(4)+b1

(4)t 
5 22.5 602.97 

5.aralık v(5)(t)=a1
(5)+b1

(5)t 
6 30 901.67 
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1.nokta için 
0=a1

(0) ilk nokta 
olduğu için 

2.nokta için 
227.04=a1

(1)+b1
(1)10 

227.04=a1
(2)+b1

(2)10 

3.nokta için 
362.78=a1

(2)+b1
(2)15 

362.78=a1
(3)+b1

(3)15 

4.nokta için 
517.35=a1

(3)+b1
(3)20 

517.35=a1
(4)+b1

(4)20 

5.nokta için 
602.97=a1

(4)+b1
(4)22.5 

602.97=a1
(5)+b1

(5)22.5 

6.nokta için 
901.67=a1

(6)+b1
(6)30 

b1
(6)=0 alınır 

 
Bu şekilde 10 bilinmeyenli 10 eşitliği olan bir denklem elde edilmiş olur. 

Quadratic Splines 
In these splines, a quadratic polynomial approximates the data between two consecutive data 
points.  Given        nnnn yxyxyxyx ,,,,......,,,, 111100  , fit quadratic splines through the data.  

The splines are given by 
 ,)( 11

2
1 cxbxaxf   10 xxx   

          ,22
2

2 cxbxa   21 xxx   
  . 
  . 
  . 
          ,2

nnn cxbxa   nn xxx 1  

So how does one find the coefficients of these quadratic splines?  There are n3  such coefficients 
 niai ,.....,2,1  ,   

 nibi ,.....,2,1  ,   

 nici ,.....,2,1  ,   

To find n3  unknowns, one needs to set up n3  equations and then simultaneously solve them.  
These n3  equations are found as follows. 
1. Each quadratic spline goes through two consecutive data points 

 )( 0101
2

01 xfcxbxa   

 )( 1111
2

11 xfcxbxa   
      . 
      . 
      . 

 )( 11
2

1   iiiiii xfcxbxa  

 )(2
iiiiii xfcxbxa   

        . 
        . 
        . 

 )( 11
2

1   nnnnnn xfcxbxa  
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 )(2
nnnnnn xfcxbxa   

This condition gives n2  equations as there are n  quadratic splines going through two 
consecutive data points. 
2. The first derivatives of two quadratic splines are continuous at the interior points.  For 
example, the derivative of the first spline 
 11

2
1 cxbxa   

is 
 112 bxa   
The derivative of the second spline 
 22

2
2 cxbxa   

is 
 222 bxa   

and the two are equal at 1xx   giving 

 212111 22 bxabxa   

 022 212111  bxabxa  
Similarly at the other interior points, 
 022 323222  bxabxa  

  . 
  . 
  . 
 022 11   iiiiii bxabxa  

  . 
  . 
  . 
 022 1111   nnnnnn bxabxa  

Since there are )1( n  interior points, we have )1( n  such equations.  So far, the total number 
of equations is )13()1()2(  nnn  equations.  We still then need one more equation. 
We can assume that the first spline is linear, that is 
 01 a   
This gives us n3  equations and n3  unknowns.  These can be solved by a number of techniques 
used to solve simultaneous linear equations. 

Example 2 
The upward velocity of a rocket is given as a function of time as 

Table 3   Velocity as a function of time. 
t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 
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(a) Determine the value of the velocity at 16t  seconds using quadratic splines. 
(b) Using the quadratic splines as velocity functions, find the distance covered by the rocket from 

s11t  to s16t . 
(c) Using the quadratic splines as velocity functions, find the acceleration of the rocket at 

s16t . 

Solution 
a) Since there are six data points, five quadratic splines pass through them. 

,)( 11
2

1 ctbtatv   100  t  

        ,22
2

2 ctbta   1510  t  

        ,33
2

3 ctbta   2015  t  

        ,44
2

4 ctbta   5.2220  t  

        ,55
2

5 ctbta   305.22  t  

The equations are found as follows. 
1. Each quadratic spline passes through two consecutive data points.  

11
2

1 ctbta   passes through 0t  and 10t . 

 0)0()0( 11
2

1  cba                                                                         (1) 

 04.227)10()10( 11
2

1  cba                                                                        (2) 
 

22
2

2 ctbta   passes through 10t  and 15t . 

 04.227)10()10( 22
2

2  cba                                                                         (3) 

 78.362)15()15( 22
2

2  cba                                                                         (4) 
 

33
2

3 ctbta   passes through 15t  and 20t . 

 78.362)15()15( 33
2

3  cba                                                                                       (5) 

 35.517)20()20( 33
2

3  cba                                                                           (6) 

 

44
2

4 ctbta   passes through 20t  and 5.22t . 

 35.517)20()20( 44
2

4  cba                                                                           (7) 

 97.602)5.22()5.22( 44
2

4  cba                                                                           (8) 
 

55
2

5 ctbta   passes through 5.22t  and 30t . 

 97.602)5.22()5.22( 55
2

5  cba                                                                           (9) 

 67.901)30()30( 55
2

5  cba                                                                         (10) 

2. Quadratic splines have continuous derivatives at the interior data points. 
At 10t  
 0)10(2)10(2 2211  baba                                                                                  (11) 
At 15t  
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 0)15(2)15(2 3322  baba                                                                         (12) 

At 20t  
 0)20(2)20(2 4433  baba                                                                         (13) 

At 5.22t  
 0)5.22(2)5.22(2 5544  baba                                                                         (14) 

3.  Assuming the first spline 11
2

1 ctbta   is linear, 

 01 a                                                                             (15) 
Combining Equation (1) –(15) in matrix form gives 


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



















































0

0

0

0

0

67.901

97.602

97.602

35.517

35.517

78.362

78.362

04.227

04.227

0

000000000000001

01450145000000000

00001400140000000

00000001300130000

00000000001200120

130900000000000000

15.2225.506000000000000

00015.2225.506000000000

000120400000000000

000000120400000000

000000115225000000

000000000115225000

000000000110100000

000000000000110100

000000000000100

5

5

5

4

4

4

3

3

3

2

2

2

1

1

1

c

b

a

c

b

a

c

b

a

c

b

a

c

b

a

 

 
Solving the above 15 equations give the 15 unknowns as 

i  ia  ib  ic  

1 0 22.704 0 
2 0.8888 4.928 88.88 
3 –0.1356 35.66 –141.61 
4 1.6048 –33.956 554.55 
5 0.20889 28.86 –152.13 

 
Therefore, the splines are given by 
 ,704.22)( ttv      100  t  

        ,88.88928.48888.0 2  tt   1510  t  

        ,61.14166.351356.0 2  tt   2015  t  

        ,55.554956.336048.1 2  tt   5.2220  t  

        ,13.15286.2820889.0 2  tt   305.22  t  
At s16t  

 61.141)16(66.35)16(1356.0)16( 2 v m/s24.394  
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b) The distance covered by the rocket between 11 and 16 seconds can be calculated as 

     
16

11

)()11()16( dttvss  

But since the splines are valid over different ranges, we need to break the integral accordingly as 
 ,88.88928.48888.0)( 2  tttv   1510  t  

        ,61.14166.351356.0 2  tt  2015  t  

   
16

11

15

11

16

15

)()()( dttvdttvdttv  

      
15

11

16

15

22 )61.14166.351356.0()88.88928.48888.0()11()16( dtttdtttss  

                              
16

15

23

15

11

23

61.141
2

66.35
3

1356.0

88.88
2

928.4
3

8888.0





















t
tt

t
tt

 

          53.37835.1217  9.1595  m 
 
c) What is the acceleration at 16t ? 

 
16

)()16(



t

tv
dt

d
a  

    )61.14166.351356.0()()( 2  tt
dt

d
tv

dt

d
ta  

   66.352712.0        t ,  2015  t  
 66.35)16(2712.0)16( a 2m/s321.31  
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Multiple-Choice Test Chapter 05.05 Spline Method of Interpolation 
 
1. The following n  data points,  11, yx ,  22 , yx , ……..  nn yx , , are given.  For conducting 

quadratic spline interpolation the x -data needs to be 
(A) equally spaced 
(B) placed in ascending or descending order of x -values 
(C) integers 
(D) positive 
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2. In cubic spline interpolation, 

(A) the first derivatives of the splines are continuous at the interior data points 
(B) the second derivatives of the splines are continuous at the interior data points 
(C) the first and the second derivatives of the splines are continuous at the interior data points 
(D) the third derivatives of the splines are continuous at the interior data points 

 
3. The following incomplete y  vs. x  data is given. 

x  1 2 4 6 7 
y  5 11 ???? ???? 32 

 The data is fit by quadratic spline interpolants given by 
    1 axxf ,  21  x  

    42   ,9142 2  xxxxf  

    64   ,2  xdcxbxxf  

    76    ,92830325 2  xxxxf  
 where dcba and ,,,  are constants.  The value of c  is most nearly 

(A) 00.303      (B) 50.144       (C) 0.0000      (D) 14.000 
 

4. The following incomplete y  vs. x  data is given. 
x  1 2 4 6 7 
y  5 11 ???? ???? 32 

 The data is fit by quadratic spline interpolants given by 
    21   ,1  xaxxf ,   

    42   ,9142 2  xxxxf  

    64   ,2  xdcxbxxf  

    76    ,2  xgfxexxf  

 where gfedcba and ,,,,,, are constants.  The value of 
dx

df
 at 6.2x  most nearly is 

(A) 50.144       (B) 0000.4      (C) 3.6000      (D) 12.200 
 
5. The following incomplete y  vs. x  data is given. 

x  1 2 4 6 7 
y  5 11 ???? ???? 32 

 The data is fit by quadratic spline interpolants given by 
    21   ,1  xaxxf ,   

    42   ,9142 2  xxxxf  

    64   ,2  xdcxbxxf  

    76    ,92830325 2  xxxxf  

 where dcba and ,,,  are constants.  What is the value of  
5.3

5.1

dxxf ? 

(A) 23.500     (B) 25.667     (C) 25.750       (D) 28.000 
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6. A robot needs to follow a path that passes consecutively through six points as shown in the 
figure.  To find the shortest path that is also smooth you would recommend which of the 
following? (bir robot ardışık 6 noktadan geçecektir. En kısa yolu bulabilmek için aşağıdakilerden 
hangisini tavsiye edersiniz?) 

(A) Pass a fifth order polynomial through the data 
(B) Pass linear splines through the data 
(C) Pass quadratic splines through the data 
(D) Regress the data to a second order polynomial 

 

Path of a Robot

0

2

4

6

8

0 5 10 15

x

y

 
 
For a complete solution, refer to the links at the end of the book. 
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Chapter 08.02 Euler’s Method for Ordinary Differential Equations 
 
After reading this chapter, you should be able to: 
 

1. develop Euler’s Method for solving ordinary differential equations, 
2. determine how the step size affects the accuracy of a solution, 
3. derive Euler’s formula from Taylor series, and 
4. use Euler’s method to find approximate values of integrals. 

 

What is Euler’s method? 
Euler’s method is a numerical technique to solve ordinary differential equations of the form 

     00,, yyyxf
dx

dy
                                (1) 

So only first order ordinary differential equations can be solved by using Euler’s method.  In 
another chapter we will discuss how Euler’s method is used to solve higher order ordinary 
differential equations or coupled (simultaneous) differential equations.  How does one write a 
first order differential equation in the above form? 
 

Example 1  
Rewrite 

   50,3.12   yey
dx

dy x  

in  

0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50,3.12   yey
dx

dy x  

   50,23.1   yye
dx

dy x  

In this case 
   yeyxf x 23.1,    
 

Example 2 
Rewrite 

   50  ),3sin(222  yxyx
dx

dy
e y  

in  

0)0(  ),,( yyyxf
dx

dy
  form. 
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Solution 

   50  ),3sin(222  yxyx
dx

dy
e y  

   50  ,
)3sin(2 22




 y
e

yxx

dx

dy
y

 

In this case 

  
ye

yxx
yxf

22)3sin(2
,


  

 

Derivation of Euler’s method 
At 0x , we are given the value of .0yy    Let us call 0x  as 0x .  Now since we know the 

slope of y  with respect to x , that is,  yxf , , then at 0xx  , the slope is  00 , yxf .  Both 0x  

and 0y  are known from the initial condition   00 yxy  . 

 

 
Figure 1  Graphical interpretation of the first step of Euler’s method. 

 
So the slope at 0xx   as shown in Figure 1 is 

 Slope 
Run

Rise
  

           
01

01

xx

yy




  

            00 , yxf  

From here 
   010001 , xxyxfyy   

Calling 01 xx  the step size h , we get 

 y 

Φ 

Step size, h 

x 

),( 00 yx  

True value 

y1, 
Predicted 
value 

1x  
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  hyxfyy 0001 ,                                              (2) 

One can now use the value of 1y  (an approximate value of y  at 1xx  ) to calculate 2y , and that 

would be the predicted value at 2x , given by 

  hyxfyy 1112 ,  

 hxx  12  

Based on the above equations, if we now know the value of iyy   at ix , then 

  hyxfyy iiii ,1                                                          (3) 

This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some 
books, it is also called the Euler-Cauchy method. 

 
Figure 2 General graphical interpretation of Euler’s method.  

 
 
Example 3 
A ball at K1200  is allowed to cool down in air at an ambient temperature of K300 .  Assuming 
heat is lost only due to radiation, the differential equation for the temperature of the ball is given 
by  

     K12000  ,1081102067.2 8412   
dt

d
   

where   is in K  and t  in seconds.  Find the temperature at 480t  seconds using Euler’s 
method.  Assume a step size of  240h  seconds. 

Solution 

  8412 1081102067.2   
dt

d
 

    8412 1081102067.2,   tf  
Per Equation (3), Euler’s method reduces to  

 Φ 

Step size 

h 

True Value 

  
  yi+1, Predicted value 

 
yi 

x 

y 

xi xi+1 
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  htf iiii  ,1   

For 0i , 00 t , 12000   

  htf 0001 ,   

        2401200,01200  f  

         24010811200102067.21200 8412    

        2405579.41200   
      09.106 K 

1  is the approximate temperature at 

 httt  01 2400  240  

   09.1062401   K 

For 1i , 2401 t , 09.1061   

  htf 1112 ,   
        24009.106,24009.106  f  

         240108109.106102067.209.106 8412    

        240017595.009.106   
      32.110 K 

2  is the approximate temperature at  

 httt  12 240240 480  
   32.1104802   K 
Figure 3 compares the exact solution with the numerical solution from Euler’s method for the 
step size of 240h . 
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Figure 3  Comparing the exact solution and Euler’s method. 

 
The problem was solved again using a smaller step size.  The results are given below in Table 1. 
 
                     Table 1  Temperature at 480 seconds as a function of step size, h . 
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Step size, h   480  tE  %|| t  
480 
240 
120 
60 
30 

-987.81 
110.32 
546.77 
614.97 
632.77 

1635.4 
537.26 
100.80 
32.607 
14.806 

252.54 
82.964 
15.566 
5.0352 
2.2864 

Figure 4 shows how the temperature varies as a function of time for different step sizes. 

-1500

-1000

-500

0

500

1000

1500

0 100 200 300 400 500

Time, t (sec)T
em

pe
ra

tu
re

,

Exact solution 

h =120
h =240

h = 480

θ
(K

)

 
Figure 4  Comparison of Euler’s method with the exact solution 
 for different step sizes. 

 
The values of the calculated temperature at 480t s as a function of step size are plotted in 
Figure 5. 
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              Figure 5  Effect of step size in Euler’s method. 
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The exact solution of the ordinary differential equation is given by the solution of a non-linear 
equation as 

  9282.21022067.010333.0tan8519.1
300

300
ln92593.0 321 


  t




          (4) 

The solution to this nonlinear equation is 
 57.647 K 
It can be seen that Euler’s method has large errors.  This can be illustrated using the Taylor 
series. 

           ...
!3

1

!2

1 3
1

,
3

3
2

1

,
2

2

1
,

1   ii

yx

ii

yx

ii
yx

ii xx
dx

yd
xx

dx

yd
xx

dx

dy
yy

iiiiii

             (5) 

    ...),(''
!3

1
),('

!2

1
))(,( 3

1
2
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As you can see the first two terms of the Taylor series 
  hyxfyy iiii ,1   

are Euler’s method. 
The true error in the approximation is given by 

 
   

...
!3

,

!2

, 32 





 h
yxf

h
yxf

E iiii
t                                                                           (7) 

The true error hence is approximately proportional to the square of the step size, that is, as the 
step size is halved, the true error gets approximately quartered.  However from Table 1, we see 
that as the step size gets halved, the true error only gets approximately halved.  This is because 
the true error, being proportioned to the square of the step size, is the local truncation error, that 
is, error from one point to the next.  The global truncation error is however proportional only to 
the step size as the error keeps propagating from one point to another. 
 
Can one solve a definite integral using numerical methods such as Euler’s method of 
solving ordinary differential equations? 
Let us suppose you want to find the integral of a function )(xf  

  
b

a

dxxfI . 

Both fundamental theorems of calculus would be used to set up the problem so as to solve it as 
an ordinary differential equation. 
The first fundamental theorem of calculus states that if f  is a continuous function in the interval 
[a,b], and F  is the antiderivative of f , then 

     aFbFdxxf
b

a

  

The second fundamental theorem of calculus states that if f  is a continuous function in the open 
interval D , and a  is a point in the interval D , and if  

   
x

a

dttfxF  

then  
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   xfxF   
at each point in D .  

Asked to find   
b

a

dxxf , we can rewrite the integral as the solution of an ordinary differential 

equation (here is where we are using the second fundamental theorem of calculus) 

   ,0)(  ,  ayxf
dx

dy
  

where then  by  (here is where we are using the first fundamental theorem of calculus) will give 

the value of the integral  
b

a

dxxf .   

 

Example 4 
Find an approximate value of  

 
8

5

36 dxx  

using Euler’s method of solving an ordinary differential equation.  Use a step size of 5.1h . 

Solution 

Given 
8

5

36 dxx , we can rewrite the integral as the solution of an ordinary differential equation 

   05,6 3  yx
dx

dy
 

where  8y  will give the value of the integral 
8

5

36 dxx .   

  yxfx
dx

dy
,6 3  ,   05 y  

The Euler’s method equation is 
  hyxfyy iiii ,1   

Step 1  
 0,5,0 00  yxi  

           5.1h  

          

5.6    

5.15    
01



 hxx

 

          hyxfyy 0001 ,  

     5.10,50  f  

     5.1560 3   
   1125  
   )5.6(y  
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Step 2 
            1125,5.6,1 11  yxi  

         

8     

5.15.6     
12



 hxx

 

          hyxfyy 1112 ,  

     5.11125,5.61125  f  

               5.15.661125 3   
   625.3596  
   )8(y  
Hence 

 )5()8(6
8

5

3 yydxx   

              0625.3596   

                 625.3596  
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