1.5 Chapter 05.03 Newton’s Divided Difference Interpolation

After reading this chapter, you should be able to:

1. derive Newton’s divided difference method of interpolation,

2. apply Newton’s divided difference method of interpolation, and

3. apply Newton's divided difference method interpolants to find derivatives and integrals.

What is interpolation?
Many times, data is given only at discrete points such as (xo, yo), (xl, yl), ...... , (x,H, yH),

(xn, v, ) So, how then does one find the value of y at any other value of x? Well, a continuous

function f (x) may be used to represent the n+1 data values with f (x) passing through the
n+1 points (Figure 1). Then one can find the value of y at any other value of x. This is called

interpolation.

Of course, if x falls outside the range of x for which the data is given, it is no longer
interpolation but instead is called extrapolation.

So what kind of function f(x) should one choose? A polynomial is a common choice
for an interpolating function because polynomials are easy to

(A) evaluate,
(B) differentiate, and
(C) integrate,
relative to other choices such as a trigonometric and exponential series.

Polynomial interpolation involves finding a polynomial of order »n that passes through
the n+1 points. One of the methods of interpolation is called Newton’s divided difference
polynomial method. Other methods include the direct method and the Lagrangian interpolation
method. We will discuss Newton’s divided difference polynomial method in this chapter.

Newton’s Divided Difference Polynomial Method

To illustrate this method, linear and quadratic interpolation is presented first. Then, the general
form of Newton’s divided difference polynomial method is presented. To illustrate the general
form, cubic interpolation is shown in Figure 1.
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Figure 1 Interpolation of discrete data.

Linear Interpolation
Given (x,,y,) and (x,,y,), fit a linear interpolant through the data. Noting y = f(x) and

vy, = f(x,), assume the linear interpolant f,(x) is given by (Figure 2)
Si(x)=b, +b,(x—x,)
Since at x = x,,,
Si(xg) = f(xy) =by +b,(x, —x,) = b,
and at x = x|,
Si(x) = F(x)=by +b(x, —x,)
= f(x)+b,(x, —x,)

giving
MWICORRIEN
X, — X,
So
by = f(xy)
p - L)~ )
X1 =X

giving the linear interpolant as
S1(x) =by + by (x—x,)

fﬂx):f(%ﬂw

Xy 0

(x—xp)
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Figure 2 Linear interpolation.

Example 1

The upward velocity of a rocket is given as a function of time in Table 1 (Figure 3).

Table 1 Velocity as a function of time.

t (s) | v(t) (m/s)
0 0

10 227.04

15 362.78

20 517.35
22.5 |602.97
30 901.67

Determine the value of the velocity at # =16 seconds using first order polynomial interpolation
by Newton’s divided difference polynomial method.

Solution

For linear interpolation, the velocity is given by

w(t)=b, +b(t—1,)

Since we want to find the velocity at # =16, and we are using a first order polynomial, we need
to choose the two data points that are closest to # =16 that also bracket t =16 to evaluate it.
The two points are ¢t =15 and ¢ =20.

Then
t, =15, v(t,) =362.78
t, =20,v(t,)=517.35
gives
b, =v(t,)
=362.78



b, = v(t,) —v(t,)
tl _to
_ 517.35-362.78

20-15
=30.914
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Figure 3 Graph of velocity vs. time data for the rocket example.

Hence

v(t) =b, +b,(t—t,)

=362.78+30.914(¢ - 15), 15<t<20

At t =16,

v(16) =362.78+30.914(16 —15)

=393.69 m/s

If we expand

v(t) =362.78 +30.914(¢ - 15), 15<5t<20
we get

v(t) =-100.93+30.914¢, 15<t<20

and this is the same expression as obtained in the direct method.

Quadratic Interpolation
Given (x,,y,), (x;,»,), and (x,,y,), fit a quadratic interpolant through the data. Noting

y=f(x), yo=f(x), y =f(x), and y, = f(x,),assume the quadratic interpolant f,(x) is
given by

S (x) =by +b,(x—xy) + b, (x —x, )(x — x,)
At x=x,,

So(xg) = f(x0) = by + b (xy —x,) + by () — %, )(x) — %))



:bO
by = f(x,)
At x =x,
SF2(x) = 1 (x) = by + b (x; = x) + by (x; = x)(x; — x,)
S(x) = f(x0) +b(x —x,)

giving

MLEARYIEN

X=X

At x=x,

F2(,) = f(x)) = by + b (x, = x0) + by (x, = x)(x, —x;)

S(x,)= f(xo)"'wocz —Xo)+b,(x; —x,)(x; —x;)
Giving

S )= fOx)  fx) = f(xp)
b, = X, =X X~ X
Xy =X

Hence the quadratic interpolant is given by
S (x) =by + b, (x = xy) + by (x —x )(x — x;)
S )= f(x) _ f(x) = f(x)

X, =X X — X

=S (x)+

(x = x))(x—x,)

SO (s
— X

X=X X, =X

(xl,yl) (xzoyz)
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Figure 4 Quadratic interpolation.

Example 2
The upward velocity of a rocket is given as a function of time in Table 2.



Table 2 Velocity as a function of time.

t (s) | v(®) (m/s)
0 0

10 |227.04

15 [362.78

20 | 517.35
22.5 | 602.97

30 | 901.67

Determine the value of the velocity at =16 seconds using second order polynomial
interpolation using Newton’s divided difference polynomial method.

Solution
For quadratic interpolation, the velocity is given by

W) =by +b,(t—1,)+b,(t —1,)(t — 1)
Since we want to find the velocity at 1 =16, and we are using a second order polynomial, we
need to choose the three data points that are closest to # =16 that also bracket 1 =16 to evaluate
it. The three points are ¢, =10, ¢, =15, and ¢, =20.
Then

t, =10, v(t,) =227.04

t, =15, v(t,) =362.78

t, =20, v(t,) =517.35

gives
bo = V(to)
=227.04
bl — v(tl)_v(tﬂ)
tl _to
36278 —227.04
15-10
=27.148
v(t,) —v(t)) _ v(t,) —v(t,)
b2 _ tz _tl tl _to
tz _to
517.35-362.78 3 362.78—227.04
2015 15-10
20-10
30.914-27.148
10
=0.37660
Hence

v(t)=b, +b,(t—1t))+b,(t—t,))(t—t)



=227.04+27.148(t —10) + 0.37660(t —10)(z — 15), 10<¢<20
At t =16,
v(16) =227.04+27.148(16 —10) + 0.37660(16 —10)(16 —15)
=392.19m/s

If we expand
v(t) =227.04 +27.148(t —10) + 0.37660(t —10)(t —15), 10 <1 <20

we get
v(t) =12.05+17.733¢t +0.37660¢>, 10<¢<20
This is the same expression obtained by the direct method.

General Form of Newton’s Divided Difference Polynomial
In the two previous cases, we found linear and quadratic interpolants for Newton’s divided
difference method. Let us revisit the quadratic polynomial interpolant formula

fo(x)=by +b,(x—x,)+b,(x—x,)(x—x,)

where
by = f(x,)
RIEAEVIED
X1 =X
S ) - () f)— f(x)
b, = X, =X X~ X
Xy =X

Note that b, b, and b, are finite divided differences. b,, b,,and b, are the first, second, and
third finite divided differences, respectively. We denote the first divided difference by
STxo]= f(xy)
the second divided difference by
_ S (x) = f(x)

SIx,x,1=
X — X

and the third divided difference by
SIxx 1= fx,%]

STx25%,%0] =
Xy = Xg
J) =) fx)—f(x)
_ X, =X X — X
- Xy —Xo

where f[x,], f[x,,x,], and f[x,,x,,x,] are called bracketed functions of their variables

enclosed in square brackets.
Rewriting,

2 () = flxo 14 fLx0x0 100 = x0) + x5, 0, X0 J(6 = X )(x = x,)
This leads us to writing the general form of the Newton’s divided difference polynomial for
n+1 data points, (xoayo )’(xl’yl )s ~~~~~~ ’(xn—l’yn—l )a (xn’yn)’ as



f,(x)=b, +b(x—=x,)+...+Db,(x = x,)(x = x,)..(x = x,_,)
where

by = f1x,]

b, = fx,,%,]

b, = flx;5,%,,%,]

by = f1%,05X, 50 Xy ]
b, = f1x,,%, s Xy ]
where the definition of the m™ divided difference is
b, = fIx, e , X0 ]
_ STx e I B il B AR , X, ]

X, — X,

m

From the above definition, it can be seen that the divided differences are calculated recursively.
For an example of a third order polynomial, given (x,,y,), (x,,»,), (x,,»,), and (x5, y;),

S3(x0) = flxo 1+ fTx,x0J(x = x0) + fx,, %), %0 1(x = x ) (x — x;)

+ x5, x5, %0 ](x = X )(x — x) )(x — x,)

b, b

% f(x:< / / § ,

flx%] \ ’
X, f(xl) < Slxzxx,] \

f[xz,xl] < x3,x2,xl,x0]
. f(x2)< ol

f[x3,x2] /
Xy f(xg)/

Figure 5 Table of divided differences for a cubic polynomial.

Example 3
The upward velocity of a rocket is given as a function of time in Table 3.

Table 3 Velocity as a function of time.

t (s) | V@) (m/s)
0 0

10 | 227.04

15 |362.78




20 517.35
22.5 | 602.97
30 901.67

a) Determine the value of the velocity at #=16 seconds with third order polynomial
interpolation using Newton’s divided difference polynomial method.

b) Using the third order polynomial interpolant for velocity, find the distance covered by the
rocket from t=11s to  =16s.

c¢) Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at
t=16s.

Solution
a) For a third order polynomial, the velocity is given by

W) =by +b,(t—1,)+ Dy (t —1,)(t —1,) + Dy (1 — 1, )t — 1))t —1,)
Since we want to find the velocity at ¢ =16, and we are using a third order polynomial, we need

to choose the four data points that are closest to # =16 that also bracket 1 =16 to evaluate it.
The four data points are ¢, =10, #, =15, t, =20, and ¢; =22.5.

Then
t, =10, v(t,)=227.04
t, =15, v(t,)=362.78
t, =20, wv(t,)=517.35
t, =22.5, v(t;) = 602.97
gives
by =t]
=(t,)
=227.04
by =Ht,,1,]
_ v(t,) = v(t,)
L=
~362.78-227.04
© o 15-10
=27.148
by =V[t,,t,,1,]
_ V4,41 -M1,2]
L, =t
w(t,) —v(t)
L, —1
_517.35-362.78

20-15
=30.914
Wt,,1,]=27.148

v[t,,t ] =




b _V[tZ’tl]_v[tlatO]
, =
t, —t,
©30.914-27.148
20-10
=0.37660
b3 =v[l‘3,t2,l‘1,l‘0]
:v[t39129t1]_v[t29t17t0]
ts _to
V[t 5t ]—V[t ’t]
sty )] = = ———
t3 -

v(t,)—v(t
) = )
3 2
602.97-517.35

22.5-20
=34.248

v(t,) —v(t))
tz _tl
B 517.35-362.78

20-15
=30.914

vty 0,115, ]

L4
_34.248-30.914
-~ 225-15

= 0.44453

Wt,,t,,t,]1=0.37660

_ ity 4,4 1=V, 8,8 ]
t,—t,

~0.44453-0.37660

B 22.5-10

=5.4347x107

v[t,,t ] =

;. 0,01 =

b3

Hence

v(t) = bo +b1(t_t0)+b2(t_t0)(t_tl)+b3(t_t0)(t_t1)(t_tz)

=227.04+27.148(t —10)+ 0.37660(¢ —10)(t —15)
+ 5.5347X1073(t —10)(z —15)(t —20)

At t =16,

v(16) =227.04+27.148(16 —10) + 0.37660(16 —10)(16 —15)

+5.5347><10_3(16—10)(16—15)(16—20)
=392.06 m/s



b) The distance covered by the rocket between ¢t =11s and #=16s can be calculated from the
interpolating polynomial
v(t) =227.04+27.148(t —10) + 0.37660(¢ —10)(¢ — 15)
+5.5347x107° (t —10)(¢ = 15)(t — 20)
=—4.2541+21.265¢ + 0.132041> + 0.00543477°, 10 <t < 22.5
Note that the polynomial is valid between =10 and ¢ =22.5 and hence includes the limits of

t=11and t=16.
So

16

5(16)—s(11) = [v(e)dr

11

16
= j (—4.2541421.265¢ +0.13204¢> +0.0054347¢ )dt
11

11

2 3 47|16
- {— 42541 + 21.265% +0. 13204% +0.0054347 ﬂ

=1605m
c¢) The acceleration at ¢ =16 is given by

d
aﬂ@—gpwm%

am=%wn

= di(— 42541+ 21.265¢ +0.13204¢> + 0.0054347¢ )

t
=21.265+0.26408¢ +0.016304¢°

a(16) = 21.265+0.26408(16) +0.016304(16)”

=29.664 m/s’
INTERPOLATION
Topic Newton’s Divided Difference Interpolation
Summary Textbook notes on Newton’s divided difference interpolation.
Major General Engineering
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Web Site http://numericalmethods.eng.usf.edu

Multiple-Choice Test Chapter 05.03 Newton’s Divided Difference Polynomial Method

1. If a polynomial of degree n has n+1 zeros, then the polynomial is
(A)  oscillatory
(B)  zero everywhere
(C)  quadratic

11



(D)  not defined

2. The following x,y data is given.

x | 15]18]22
Y 12413725
The Newton’s divided difference second order polynomial for the above data is given

by
fo(x)=by +b,(x=15)+b,(x —15)x —18)

The value of b, is most nearly

(A) —1.0480
(B)  0.14333
(C) 43333
(D)  24.000

3. The polynomial that passes through the following x, y data

X 11822124
Y 1? [25]123

is given by
8.125x> —324.75x +3237, 18<x<24
The corresponding polynomial using Newton’s divided difference polynomial is given
by
£y (x) = b, +b,(x—18)+b,(x—18)x —22)

The value of b, is most nearly

(E) 0.25000
(F)  8.1250
(G)  24.000

(H)  not obtainable with the information given

4. Velocity vs. time data for a body is approximated by a second order Newton’s divided
difference polynomial as

w(t) = b, +39.622(¢ — 20)+ 0.5540(t —20)(t —15), 10 <7< 20

The acceleration in m/s” at t =15 is

(I) 0.5540
J)  39.622
(K) 36.852

(L)  not obtainable with the given information

5. The path that a robot is following on a x — y plane is found by interpolating the following four
data points as

X |2 45557
Y 17517516 |5

y(x) = 0.1524x* —2.257x% +9.605x — 3.900

12



The length of the path from x =2 to x =7 is

M) (7.5-7.5F +(45-2F +/(6-7.5} +(5.5-4.5F +/(5-6) +(7-5.5f

7
() [1+(0.1524x° —2.257x" +9.605x —3.900) dx
2

7

(0) j \/1 +(0.4572x% —4.514x +9.605)* dx

2

;
(P) j (0.1524x" —2.257x* +9.605x — 3.900)dx
2

7. The following data of the velocity of a body is given as a function of time.
Time (s) 0 |15]18[22 |24
Velocity (m/s) | 22 | 24 | 37 | 25| 123
If you were going to use quadratic interpolation to find the value of the velocity at
t =14.9 seconds, the three data points of time you would choose for interpolation are

Q) 0,15,18
(R) 15,18,22
(S) 0,15,22
(T) 0,18,24

For a complete solution, refer to the links at the end of the book.

Newton’s Divided Difference Interpolation — More Examples Chemical Engineering

Example 1
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to
calculate the specific heat of water at 61°C. The specific heat of water is given as a function of

time in Table 1.

Table 1 Specific heat of water as a function of temperature.
Temperature, T' | Specific heat, C B

A

13



22 4181
42 4179
52 4186
82 4199
100 4217

Specific heat vs. Temperature
4225 . .
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Figure 1 Specific heat of water vs. temperature.

Determine the value of the specific heat at 7 = 61°C using Newton’s divided difference method
of interpolation and a first order polynomial.

Solution
For linear interpolation, the specific heat is given by

C,(T)=b, +b/(T-T,)
Since we want to find the velocity at 7 = 61°C, and we are using a first order polynomial we
need to choose the two data points that are closest to 7 =61°C that also bracket 7' =61°C to
evaluate it. The two points are 7 =52 and 7 =82.
Then

T, =52, C,(T;)=4186

T, =82, C,(T))=4199
gives

b, = Cp (Ty)

=4186

14



_C,@)-C, @)
T1 _To
~ 4199-4186

82-52
=0.43333

bl

Hence
Cp(T) =b, +b,(T'-T,)
=4186+0.43333(T —52), 52<T7T<82
At T =61,
Cp (61)=4186+0.43333(61-52)
J
kg —°C

=4189.9

If we expand

C,(T)=4186+0.43333(T —-52), 52<T <82
we get

C,(T)=4163.5+0.43333T, 52<T <82

and this is the same expression as obtained in the direct method.

Example 2

To find how much heat is required to bring a kettle of water to its boiling point, you are asked to
calculate the specific heat of water at 61°C. The specific heat of water is given as a function of
time in Table 2.

Table 2 Specific heat of water as a function of temperature.
Temperature, T | Specific heat, C )

© | (e

22 4181
42 4179
52 4186
82 4199
100 4217

Determine the value of the specific heat at 7 = 61°C using Newton’s divided difference method

of interpolation and a second order polynomial. Find the absolute relative approximate error for
the second order polynomial approximation.

Solution
For quadric interpolation, the specific heat is given by
Cp(T) =by +b,(T —=T,) + b, (T -T)(T - T))

15



Since we want to find the specific heat at 7=61°C, and we are using a second order
polynomial, we need to choose the three data points that are closest to 77=61°C that also
bracket 7' = 61°C to evaluate it. The three points are 7, =42, 7, =52, and T, =82.
Then

T, =42, C,(T,)=4179

T, =52, C,(T))=4186

T,=82, C,(T,)=4199

gives
bO = Cp (TO)
=4179
b C,(T)-C,(T,)
1 I -1,
_ 4186-4179
52-42
=0.7
C,(1,)-C,(T) C,(1)-C,(T)
b. = Tz _Tl Tl _To
2 T, -T,
4199-4186 4186-4179
__ 82-52 52-42
82—-42
~0.43333-0.7
40
=—6.6667x10""
Hence
CP(T) =b,+b,(T'-T,)+b,(T -T, (T -T))
=4179+0.7(T —42) - 6.6667 x 10~ (T — 42)(T - 52), 42<T<82
At T =61,
C,(61)=4179+0.7(61-42) - 6.6667 x 107 (61-42)(61-52)
=4191.2 !
kg —°C
The absolute relative approximate error | | obtained between the results from the first and
second order polynomial is
. _[4191.2-4189.9|
| 41912 |
=0.030063%
If we expand
C,(T)=4179+0.7(T — 42) - 6.6667 x 10~ (T — 42)(T - 52), 42=<T=<82
we get

16



C,(T)=4135.0+1.3267T - 6.6667x10°T?, 42<T<82

This is the same expression obtained by the direct method.

Example 3
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to
calculate the specific heat of water at 61°C. The specific heat of water is given as a function of

time in Table 3.

Table 3 Specific heat of water as a function of temperature.
Temperature, T | Specific heat, C B

© | e

22 4181
42 4179
52 4186
82 4199
100 4217

Determine the value of the specific heat at 7 = 61°C using Newton’s divided difference method
of interpolation and a third order polynomial. Find the absolute relative approximate error for the
third order polynomial approximation.

Solution
For a third order polynomial, the specific heat profile is given by

CP(T) =b0 +b1(T_To)+b2(T_T0)(T_Tl)+b3(T_To)(T_Tl)(T_T2)
Since we want to find the specific heat at 7 = 61°C, and we are using a third order polynomial,
we need to choose the four data points that are closest to 7 = 61°C that also bracket 7' = 61°C.
The four data points are 7, =42, 7, =52, T, =82 and 7, =100.
(Choosing the four points as 7, =22, 7, =42, T, =52 and 7; =82 is equally valid.)

T, =42, C,(TI,)=4179

T,=52, C,(I,)=4186

T,=82, C,(T,)=4199

T, =100, C, (Ty)=4217

then
by, =C,IT;]
=C,(T,)
=4179
b =C,IT,.T,]

17



_C(T)-C,(Ty)
B I -1,
41864179
542
=0.7
b, = Cp[TstlaTo]
_C,IL,.T}]1-C,IT,.T,]
- T,-T,
CP[TZ’TI]:CP(Tz)—Cp(TI)
Tz _Tl
 4199-4186

82-52
=0.43333

C,IT,.T,1=0.7

L _CILT1-C, 7. T,]
’ Tz_To
0.43333-0.7

O 82-42

= —6.6667 %10

b, = Cp[Tsz»TlaTo]
_ Cp[TpTzaTl]_Cp[Tz’Tl:To]

B Ts_To
Cp[TpTz]_Cp[Tszl]
I -1,

C,(Ty)-C,(T,)

Ta _Tz
42174199
©100-82
=1
C,(1,)-C,(T)

Tz _Tl
_ 4199-4186

82-52
=0.43333

Cp[TaaTz]_Cp[TzaTl]

CIL. T, T =

C,IT5.T1,]=

Cp[TZ’T‘l]:

C,IT,.T,.T,] = -



1-0.43333
~ T 100-52
= 0.011806
C [T,.T,,T,] = ~6.6667x10™
b, = C, [T, T, T, T,]
_CITT -GN T
I, -1,
0.011806 + 6.6667 x 10>
- 100 — 42
=3.1849x10™*

Hence
C,(T)=by +b(T =Ty) + b, (T =T, (T = T,) + by (T =T, (T =T (T —T,)
=4179+0.7(T — 42) - 6.6667 x 10~ (T — 42)(T - 52)
+3.1849x 107 (T —42)(T - 52)(T —82), 42<T <100
At T =61,
C,(61)=4179+0.7(61-42) - 6.6667 x 107 (61-42)(61-52)
+3.1849x107*(61—42)(61-52)(61—-82)
J
kg —°C
The absolute relative approximate error

=4190.0

€ | obtained between the results from the second and

a

third order polynomial is
14190.0 - 4191.2|
= x10
| 41900 |

=0.027295%
If we expand

C,(T) = 4179 +0.7(T — 42) - 6.6667 x 107 (T — 42)(T — 52)
+3.1849x 107 (T — 42)(T — 52)(T —82), 42 <T <100

0

Ea

we get
C,(T) =4078.0+4.4771T —0.06272T° +3.1849x107*T>, 42 < T <100

This is the same expression as obtained in the direct method.

INTERPOLATION

Topic Newton’s Divided Difference Interpolation

Summary Examples of Newton’s divided difference interpolation.
Major Chemical Engineering

Authors  Autar Kaw

Date Aralik 30, 2016

19



Web Site  http://numericalmethods.eng.usf.edu

1.6 Chapter 05.04 Lagrangian Interpolation

After reading this chapter, you should be able to:
1. derive Lagrangian method of interpolation,
2. solve problems using Lagrangian method of interpolation, and
3. use Lagrangian interpolants to find derivatives and integrals of discrete functions.

What is interpolation?
Many times, data is given only at discrete points such as (x,,y,) (x,5,)s - (1 y,),

(x,,7,). So, how then does one find the value of y at any other value of x? Well, a continuous

function f (x) may be used to represent the n+1 data values with f (x) passing through the
n+1 points (Figure 1). Then one can find the value of y at any other value of x. This is called
interpolation.

Of course, if x falls outside the range of x for which the data is given, it is no longer
interpolation but instead is called extrapolation.

So what kind of function f (x) should one choose? A polynomial is a common choice

for an interpolating function because polynomials are easy to
(D) evaluate,
(E) differentiate, and
(F) integrate,
relative to other choices such as a trigonometric and exponential series.

Polynomial interpolation involves finding a polynomial of order n that passes through
the n+1 data points. One of the methods used to find this polynomial is called the Lagrangian
method of interpolation. Other methods include Newton’s divided difference polynomial
method and the direct method. We discuss the Lagrangian method in this chapter.
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(xo’yo)

v
=

Figure 1 Interpolation of discrete data.

The Lagrangian interpolating polynomial is given by
[0 =2 L) f(x,)
i=0

where n in £, (x) stands for the n™ order polynomial that approximates the function y = f(x)

given at n +1 data points as (x,, v, (x> ¥, oo (X, ¥, b (x,, ¥, ), and

Li(x):ﬁ

J#i
L.(x) is a weighting function that includes a product of n —1 terms with terms of j =i omitted.
The application of Lagrangian interpolation will be clarified using an example.

)C_Xj
X .

)Ci—]

Example 1
The upward velocity of a rocket is given as a function of time in Table 1.

Table 1 Velocity as a function of time.

t (s) | v(1) (m/s)
0 |0

10 | 227.04

15 |362.78

20 | 51735
22.5 | 602.97

30 | 901.67

21



Welocity vs. Time
1000 T : : : . .

anot ® i
800} .
700}t .
600t ® i
500 @ .

Welocity (mis)

400 F 1
300¢ y
200¢ y
100} 1

(_‘ 1
1] 5 10 14 20 25 a0 35
Time (5)

0
Figure 2 Graph of velocity vs. time data for the rocket example.

Determine the value of the velocity at t =16 seconds using a first order Lagrange polynomial.

Solution
For first order polynomial interpolation (also called linear interpolation), the velocity is given by

W) = 3L (0(,)

= L, (t)v(ty) + L, (1)v(t,)

(x0=yo)

v
=

Figure 3 Linear interpolation.
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Since we want to find the velocity at # =16, and we are using a first order polynomial, we need
to choose the two data points that are closest to # =16 that also bracket 1 =16 to evaluate it.
The two points are ¢, =15 and ¢, =20.

Then
t, =15, v(t,)=362.78
t, =20, v(t,)=517.35
gives

Hence

v(t) = v(t )+

0 1 1 0

0 362.78)+

V(f )

(517.35), 15<¢<20
T 15-20

16 - 20(36278) 16 15

v(16) =
= 0.8(362.78) +0.2(5 17.35)
=393.69 m/s

You can see that L,(¢) =0.8 and L,(¢) = 0.2 are like weightages given to the velocities at =15
and ¢ = 20 to calculate the velocity at 1 =16 .

5 (51739)

Quadratic Interpolation
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(x“yl) (xz’yz)

fi(x)

(XOaJ’o)

v
=

Figure 4 Quadratic interpolation.

Example 2
The upward velocity of a rocket is given as a function of time in Table 2.

Table 2 Velocity as a function of time.

t (s) | v(®) (m/s)
0 |0

10 | 227.04

15 ]362.78

20 | 517.35
22.5 | 602.97

30 | 901.67

a) Determine the value of the velocity at =16 seconds with second order polynomial

interpolation using Lagrangian polynomial interpolation.
b) Find the absolute relative approximate error for the second order polynomial

approximation.
Solution
a) For second order polynomial interpolation (also called quadratic interpolation), the velocity is
given by

w(t) = ZLi (Ov(t;)

= Ly(O)v(ty)) + L, (O)v(t,) + L, (D)v(z,)
Since we want to find the velocity at =16, and we are using a second order polynomial, we
need to choose the three data points that are closest to # =16 that also bracket ¢t =16 to evaluate
it. The three points are ¢, =10, ¢, =15, and ¢, =20.

Then
t, =10, v(t,)=227.04
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t, =15, v(t,)=362.78
t, =20, v(t,)=517.35
gives

Ly(1) = Ht

Jj=0 0 j
Jj#0

(-t -1,
to—tl ty—t,
~1

L(t)= H

J=0 ‘1 j
Jj#l

_ r—t, t—1i,
tl _to tl _tz

2

L =[]~

j=0t2 7 ./'
J#2

_ r—t, -t
tz_to tz_tl
t—t t—t t—t t—t t—t t—t
v(t) = S ) | 2 () +| —> | —L (e, t, <<t
t,—t \t,—t, L—t, \t,—t, t,—t, \'t,—t

v(16) = 16=19)16-20) s 4y (16-10)(16-20)
(10-15)(10—20) (15-10)(15-20)

, (16-10)(16-15)
(20-10)(20-15)

=(—0.08)(227.04) + (0.96)(362.78) + (0.12)(517.35)
=392.19m/s

b) The absolute relative approximate error |ea| for the second order polynomial is calculated by

considering the result of the first order polynomial (Example 1) as the previous approximation.

|OO

Hence

(362.78)

(517.35)

Tl 392,19
=0.38410%

Example 3
The upward velocity of a rocket is given as a function of time in Table 3.

Table 3 Velocity as a function of time
t (s) | v(¢) (m/s)
0 0

10 | 227.04
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15 362.78
20 517.35
22.5 1 602.97
30 901.67

a) Determine the value of the velocity at # =16 seconds using third order Lagrangian polynomial

interpolation.
b) Find the absolute relative approximate error for the third order polynomial approximation.
c) Using the third order polynomial interpolant for velocity, find the distance covered by the

rocket from t =11s to t =16s.
d) Using the third order polynomial interpolant for velocity, find the acceleration of the rocket at

t=16s.

Solution
a) For third order polynomial interpolation (also called cubic interpolation), the velocity is given

by
v(t) = ZL,- (Ov(t;)
= Ly(O)v(t,) + Li(Ov(t) + L, (0)v(t,) + Ly ()v(E;)

(x3,y3)

f(x)

(x()ayo)

Figure 5 Cubic interpolation.

Since we want to find the velocity at =16, and we are using a third order polynomial, we need
to choose the four data points closest to # =16 that also bracket # =16 to evaluate it. The four

points are ¢, =10, ¢, =15, t, =20 and ¢, =22.5.
Then
t, =10, v(t,)=227.04

26



t, =15, v(t,)=362.78
t, =20, v(t,)=517.35
t, =22.5, v(t,)=602.97

gives
3 —

Ly(®) = H '

_ t—t r—t, r—t,
to_tl to_tz to_t3

3 f—

t.
Ll(t):H ’
=0l —1;

_ r—t, t—t, t—t,
tl_to tl_t2 tl_t3

3 —

t—t,
Lz(t)zl | J
=0l

. r—1t, t—t -1,
tz —Ih \ 1L, _t1 2 _t3
_ r—t, t—t, r—t,
t3 _to t3 _tl t3 _tz

Hence

r—-1 t—t, r—t, t—1, t—
V(t) ) (to - j(to —1 ][to -0 jV(tO)-i_[tl —1 j{tl -

t—1 t—t t—t t—t t—
+ 0 ! 2 v(t,) + 0
t—t, \t,—t, \ t, 1, t,—t, \ 1, —

w(16) = (16=15)16-20)16-22.5)

(227.04)

]v(l}), t,<t<t,
-t

, (16-10)(16 - 20)(16 - 22.5)

(10—15)10—20)10-22.5) " (15-10)(15—20)(15—22.5)

, (16-10)16-15)(16 - 22.5)
(20 —10)(20 —15)(20 — 22.5)
(16 —10)(16 —15)(16 — 20)
(22.5-10)(22.5—-15)(22.5 - 20)

(517.35)

(602.97)

= (~0.0416)(227.04) + (0.832)(362.78) + (0.312)(517.35) + (—0.1024)(602.97)

=392.06 m/s



b) The absolute percentage relative approximate error,

ea| for the value obtained for v(16) can

be obtained by comparing the result with that obtained using the second order polynomial
(Example 2)

_[392.06-392.19)
| 39206 |
=0.033269%

c) The distance covered by the rocket between #=11s to #=16s can be calculated from the
interpolating polynomial as

o) = _UTIN=2000=225) o (E=10)1=20)=22.5)
(10— 15)(10—20)(10—22.5) (15-10)(15-20)(15—22.5)
(t—10)(t - 15)(t —22.5)
(20—10)(20—15)(20—22.5)

(t —10)(t —15)(t — 20)
(22.5-10)(22.5—-15)(22.5—20)

_ (t* =35t +300)(t — 22.5) (227.04) + (t* =30t +200)(t — 22.5)
(=5)(-10)(-12.5) (5)(=5)(-17.5)
. (1> =25t +150)(¢ — 22.5) (517.35) + (1> =25t +150)(t — 20)

(10)(5)(=2.5) (12.5)(7.5)(2.5)

€, x100

(362.78)

(517.35)

(602.97),10 < ¢ <22.5

(362.78)

(602.97)

= (£ —=57.5t> +1087.5t — 6750)(—0.36326) + (> — 52.5¢* + 875t —4500)(1.9348)

+(t° —47.5t> +712.5t — 3375)(—4.1388) + (¢ — 45¢> + 650t — 3000)(2.5727)
=—4.245+21.265¢+0.13195¢* + 0.00544¢°, 10 < ¢ < 22.5
Note that the polynomial is valid between ¢ =10 and ¢ =22.5 and hence includes the limits of

t=11and t=16.
So

1

s(16)—s(11) = | v(¢)dt

[

—_ =
o —

= [ (—4.245+21.265¢ + 0.13195¢> + 0.00544¢° )dt

1

—_

11

£ ¢ A
=[—-4.245¢t+21.265—+0.13195— + 0.00544 —

2 3 4
=16

05 m
d) The acceleration at # =16 is given by

a(16)=L (1) .

dt
Given that

v(t) = —4.245+21.265¢ +0.13195¢* +0.00544¢>, 10 <t <22.5

ale)=4v()

28



E %(— 4.245+21.265¢ +0.13195¢ +0.005441’)
=21.265+0.26390¢ +0.01632¢>, 10<¢ <22.5
a(16) = 21.265+0.26390(16) + 0.01632(16)°
=29.665 m/s’
Note: There is no need to get the simplified third order polynomial expression to conduct the
differentiation. An expression of the form

t—t t—t t—t
to - to -1 to _ts

gives the derivative without expansion as

dt to—t, Nto—t,) \to—t, \t,—t, ) \t,—t; \t, -1,

INTERPOLATION

Topic Lagrange Interpolation

Summary Textbook notes on the Lagrangian method of interpolation
Major General Engineering

Authors Autar Kaw, Michael Keteltas

Last Revised Aralik 30, 2016

Web Site http://numericalmethods.eng.usf.edu

Multiple-Choice Test Chapter 05.04 Lagrange Method of Interpolation

1. A unique polynomial of degree passes through n +1 data points.
(A) n+1 B) n (C) norless (D) n+1 orless

2. Given the two points [a, f(a)], [6, £(»)], the linear Lagrange polynomial f;(x) that passes
through these two points is given by

@) AW=2225@+ 05 0) B A= fla)e ()

© 1= 1)+ LD g o) 3= pla) 222 1)

3. The Lagrange polynomial that passes through the 3 data points is given by

x | 1511822
Y 1243725

()= Ly(x)24)+ L,(x)37)+ L, (x)25)

The value of L,(x) at x =16 is most nearly
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(A)—-0.071430 (B) 0.50000 (C)0.57143 (D) 4.3333

4. The following data of the velocity of a body is given as a function of time.

Time (s) 10 15 8 2 24
Velocity (m/s) |22 24 37 25 123

A quadratic Lagrange interpolant is found using three data points, ¢ =15, 18 and 22. From this
information, at what of the times given in seconds is the velocity of the body 26 m/s during
the time interval of # =15 to # = 22 seconds.

(A)20.173 (B)21.858 (C)21.667 (D) 22.020

5. The path that a robot is following on a x, y plane is found by interpolating four data points as

X |2 45557
Y 17517516 |5

y(x)=0.15238x° —2.2571x” +9.6048x — 3.9000
The length of the path from x =2 to x =7 is

(A) J(7.5-7.57 +(4.5-2) +:/(6-7.5) +(5.5-4.5) ++/(5-6)* +(7-5.5)’

7
(B) j \/1 +(0.15238x° —2.2571x” +9.6048x — 3.9000)° dx
2

;
© [ J1+(0.45714x% —4.5142x +9.6048)° dx
2

:
(D) [(0.15238x* =2.2571x" +9.6048x —3.9000)dx
2

6. The following data of the velocity of a body is given as a function of time.
Time (s) 0 |15]18[22 |24
Velocity (m/s) | 22 | 24 | 37 | 25| 123
If you were going to use quadratic interpolation to find the value of the velocity at
t =14.9 seconds, what three data points of time would you choose for interpolation?
(A)0, 15,18 (B)15,18,22 (©)0,15,22 (D)0, 18,24

For a complete solution, refer to the links at the end of the book.
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1.7 Chapter 05.05 Spline Method of Interpolation

After reading this chapter, you should be able to:
1. interpolate data using spline interpolation, and
2. understand why spline interpolation is important.

What is interpolation?
Many times, data is given only at discrete points such as (xo, yo), (xl, yl), ...... , (x,H, yH),

(xn, v, ) So, how then does one find the value of y at any other value of x? Well, a continuous

function f (x) may be used to represent the n+1 data values with f (x) passing through the
n+1 points (Figure 1). Then one can find the value of y at any other value of x. This is called
interpolation. (¢ogu zaman veriler (xo, y0), (x1, ¥1), ...., (Xn-1, ¥n-1), (n, yn) kesikli noktalar
seklindedir. Bu durumda herhangi bir x degerine karsilik gelecek olan y nasil elde edilir. F(x)
seklindeki siirekli bir fonksiyonu n+1 noktanin hepsinden gegirilebilir (Sekil 1). Boylelikle
herhangi bir x degerine karsilik gelen y degeri bulunabilir. Buna interpolasyo demistik.)

Of course, if x falls outside the range of x for which the data is given, it is no longer
interpolation but instead is called extrapolation. x degeri sinirlar diginda kaliyorsa interpolasyon
yerine extraolasyon ifadesini kullanabiliriz.

So what kind of function f (x) should one choose? A polynomial is a common choice
for an interpolating function because polynomials are easy to (f(x) nasil olmalidir? Polinom
interpolasyon fonksiyonu f(x) i¢in polinomlar trigonometrik ve iistel serilere gore daha
kullaniglidir: )

(A) evaluate, (gelistirilebilir)
(B) differentiate, and (tiirevlenebilir)
(C) integrate (toplanabilir/integre edilebilir)
relative to other choices such as a trigonometric and exponential series.

Polynomial interpolation involves finding a polynomial of order » that passes through
the n+1 points. Several methods to obtain such a polynomial include the direct method,
Newton’s divided difference polynomial method and the Lagrangian interpolation method.
(polinomiyal interpolasyon n. dereceden ve n+1 veri noktasindan gecen polinomdur. Bu tiir
polinomlar1 elde edebilmek i¢in dogrudan, Newton boliimlii fark veya Lagrangian polinom
yontemleri kullanilabilir.)

So is the spline method yet another method of obtaining this n™ order polynomial. ......
NO! Actually, when n becomes large, in many cases, one may get oscillatory behavior in the
resulting polynomial. This was shown by Runge when he interpolated data based on a simple
function of (Spline yontemi n.dereceden polinom elde edebilmek icin kullanilabilecek bir
yontemdir. Burada dikkat edilmesi gereken sey n derecesi biiyiidiikce polinomdan elde edilen
degerlerin osilasyon yapmaktadir. Bu osilasyon Runge tarafindan asagidaki fonksiyondan elde
edilen degerler kullanilarak gosterilmistir. Bu fonksiyondan [-1, 1] araliginda elde edilmis 6
degeri kullanilir ve bu degerlere uygun interpolasyon polinomu elde edilmeya caligililirsa.)

1

1+25x
on an interval of [-1, 1]. For example, take six equidistantly spaced points in [-1, 1] and find y

at these points as given in Table 1.

y:
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(xo’yo)

v
=

Figure 1 Interpolation of discrete data.

Table 1 Six equidistantly spaced points in [-1, 1].

1
g SRS
1.0 | 0.038461
06 0.1
02 |05
0.2 0.5
0.6 0.1
1.0 0.038461

Now through these six points, one can pass a fifth order polynomial
fi(x)=3.1378x107"" x* +1.2019x"* —3.3651x 107" x* —=1.7308x +1.0004x 10" x +5.6731x 107",

-1<x<1

through the six data points. On plotting the fifth order polynomial (Figure 2) and the original
function, one can see that the two do not match well. One may consider choosing more points in
the interval [-1, 1] to get a better match, but it diverges even more (see Figure 3), where 20
equidistant points were chosen in the interval [-1, 1] to draw a 19th order polynomial. In fact,
Runge found that as the order of the polynomial becomes infinite, the polynomial diverges in the
interval of —1<x<-0.726 and 0.726 <x<1. (5.dereceden bir polinom yukaridaki veri
noktalarindan gegmektedir. Bu 5. dereceden polinom kullanilarak veri noktalarindan gegen bir
grafik cizilecek olursa Sekil 2 deki gibi bir grafik elde edilir. Sekilden goriilecegi gibi polinom
verilere uygun degildir. )
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So what is the answer to using information from more data points, but at the same time
keeping the function true to the data behavior? The answer is in spline interpolation. The most
common spline interpolations used are linear, quadratic, and cubic splines.

1.2

-04 -

------- 5th Order Polynomial Function 1/(1+25%x"2)

Figure 2 5th order polynomial interpolation with six equidistant points.
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Function 1/(1+25%x"2)

------- 5th Order Polynomial

—--—-19th Order Polynomial —— 12th Order Polynomial

Figure 3 Higher order polynomial interpolation is a bad idea.

Linear Spline Interpolation (cizgisel spline interpolasyonu)

Given (xy, ) (x;, 9 heoeen(x, 1> v, Nx,, ¥, ), fit linear splines (Figure 4) to the data. This
simply involves forming the consecutive data through straight lines. So if the above data is
given in an ascending order, the linear splines are given by y, = f(x,). ((X0,y0), X1,y1), (x2,y2),
ceery (Xn-1,yn-1), (Xn,yn) veriler Sekil 4’deki gibi c¢izgisel spline’lara fit edilmektedir. Bu ardisik
verilerin birbirleri ile ¢izgisel olarak birlestirilmesi islemidir. Veriler artan sirada verilirse
cizgisel spline yi=f(xi) seklindedir.)

Y
A

(x3, y3)

(x1, y1)

(x2, y2)

(x0, y0)

Figure 4 Linear splines.
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i i-1

in the above function are simply slopes between x, , and x,.

Example 1

The upward velocity of a rocket is given as a function of time in Table 2 (Figure 5).

Table 2 Velocity as a function of time.

t(s) | vo) (mfs)
0 0

10 227.04

15 362.78

20 517.35
225 | 602.97

30 901.67

Yelocity vs. Time
1000 . .

900 } ® ]
800} .
700} :
600 | ® i
5001 & .

Welocity (mis)

400+ -
300} -
200} -
100} -

(_,r 1
] ) 10 15 20 25 30 35
Time (5)

Figure 5 Graph of velocity vs. time data for the rocket example.

0
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Determine the value of the velocity at £ =16 seconds using linear splines.

Solution

Since we want to evaluate the velocity at 1 =16, and we are using linear splines, we need to
choose the two data points closest to # =16 that also bracket =16 to evaluate it. The two
points are ¢, =15 and ¢, =20.

Then
t, =15, v(t,) =362.78 t, =20, v(t,)=517.35

gives
w(t,) —v(Z,)
V(t)zv(to)"'H(t_to)
1 o
36278+ 517.35-362.78 (t—15)
20-15

=362.78+30.913( - 15), 15<¢ <20
At t =16,
v(16) = 362.78 +30.913(16 — 15) =393.7m/s

Linear spline interpolation is no different from linear polynomial interpolation. Linear splines
still use data only from the two consecutive data points. Also at the interior points of the data, the
slope changes abruptly. This means that the first derivative is not continuous at these points. So
how do we improve on this? We can do so by using quadratic splines.

Spline kelimesi egrilebilen, degisik sekillere sokulabilen c¢ubuk veya dal anlaminda
kullanilmaktadir. Sayisal uygulamalarda bir veri grubunda veriler arasinda yumusak gecis
saglayan fonksiyonlar olarak tanimlanabilir. N nci dereceden bir spline i¢in N+1 tane veri
noktasina ihtiya¢ vardir. Burada N=1 i¢in ¢izgisel, N=2 i¢in kare ve N=3 i¢in kiibik spline
fonksiyonlar1 (2nci ve 3ncii dereceden polinomlar) ele alinacaktir.

Veriler i¢in v(t)=ai+bit ¢izgisel fonksiyonu dnerelim. 6 tane veri varsa 5 aralik/bélme vardir. her
bolme icin bu ¢izgisel denklemi yazarsak asagidaki c¢izelgeki degerler elde edilir. 6 veri varsa 12
bilinmeyen vardir. 12 tane denklem olusturulursa bu veri grubu i¢in birbiri ile uyumlu spline
egrileri elde edilir.

i |t V() (mss)

1 0 0.00
1.aralik viD(t)=a1D+bi (Mt

2 10 227.04
2.aralik vO(t)=ai®+b1 Pt

3 15 362.78
3.aralik vO(t)=aiP+bi Ot

4 20 517.35
4.aralik v&(t)=a1®D+b1 Dt

5 22.5 602.97
5.aralik vO(t)=a1D+b1 G

6 30 901.67
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0=a1© ilk nokta
oldugu i¢in
227.04=a1M+bi (V10

1.nokta i¢in

2.nokta i¢in 227.04=a;+b,210
3.nokta i¢in 362.78=a1> 15
: ¢ 362.78=a1P+b1315
—q,3) (3)
4.nokta igin S17.357ar b 120

517.35=a1®+b:1420
602.97=a1®+b1*22.5
602.97=2194b122.5
901.67=a1©+b;©30
b1©©=0 alinir

5.nokta i¢in

6.nokta i¢in

Bu sekilde 10 bilinmeyenli 10 esitligi olan bir denklem elde edilmis olur.

Quadratic Splines
In these splines, a quadratic polynomial approximates the data between two consecutive data
points.  Given (xy, o (X, hevreer (X, 15,4 b (x,,, ), fit quadratic splines through the data.

The splines are given by

f(x)=ax’ +bx+c,, X, Sx <X,
=a,x’ +bhyx+c,, X, <x<x,
=ax’ +bx+c,, X, Sx<x,

So how does one find the coefficients of these quadratic splines? There are 3n such coefficients
a,i=12,..,n
b,i=12,..,n
¢, i=L2,..,n
To find 3n unknowns, one needs to set up 3n equations and then simultaneously solve them.
These 3n equations are found as follows.
1. Each quadratic spline goes through two consecutive data points

2
ax,” +bx,+c, = f(x,)

a1x12 +bx, +c, = f(x)

2
ax, " +bx, +c; = fx.,)

2
ax;” +bx +c = f(x;)

2
a xn—l +bnxn—1 +cn = f(xn—l)

n
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2
an‘xn +bnxn +Cn :f(xn)

This condition gives 2n equations as there are » quadratic splines going through two

consecutive data points.
2. The first derivatives of two quadratic splines are continuous at the interior points. For

example, the derivative of the first spline
a,x’ +bx+c,

is
2a,x+b,

The derivative of the second spline
a,x’ +b,x+c,

is
2a,x+b,

and the two are equal at x = x, giving
2a,x, +b, =2a,x, +b,
2a,x, +b, —2a,x, —b, =0

Similarly at the other interior points,
2a,x, +b, —2a,x, —b, =0

2aixi +bi _2ai+1xi _bi+l =0

+b,,-2a,x,,-b =0

n’n-1

2a, x,
Since there are (n—1) interior points, we have (n—1) such equations. So far, the total number
of equations is (2n)+ (n—1) = (3n—1) equations. We still then need one more equation.
We can assume that the first spline is linear, that is

a, =0
This gives us 3n equations and 3n unknowns. These can be solved by a number of techniques
used to solve simultaneous linear equations.

Example 2
The upward velocity of a rocket is given as a function of time as
Table 3 Velocity as a function of time.

t (s) v(t) (m/s)
0 0

10 227.04

15 362.78
20 517.35
22.5 602.97
30 901.67
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(a) Determine the value of the velocity at # =16 seconds using quadratic splines.
(b) Using the quadratic splines as velocity functions, find the distance covered by the rocket from
t=11Is to t=16s.

(c) Using the quadratic splines as velocity functions, find the acceleration of the rocket at
t=16s.

Solution
a) Since there are six data points, five quadratic splines pass through them.

v(it)y=at’ +bt+c, 0<t<10
=a,t’ +bt+c,, 10<t<15
=a;t’ +bit+c,, 15<¢<20
=a,’ +bt+c,, 20<t<22.5
=agt’ +bit+cg, 22.5<t<30

The equations are found as follows.
1. Each quadratic spline passes through two consecutive data points.

a,t’ + bt + ¢, passes through ¢ =0 and ¢ =10.
a,(0)* +b,(0)+c, =0 (1)
a,(10)* +5b,(10) + ¢, = 227.04 (2)

a,t’ +b,t +c, passes through =10 and =15,
a,(10)* +b,(10) +c, = 227.04 3)
a,(15)* +b,(15) +c, =362.78 4)

a,t’ + byt +c, passes through ¢ =15 and ¢ = 20.
a,(15)* +b,(15)+c, =362.78 %)
a,(20)* +b,(20) + ¢, =517.35 (6)

a,t’ +b,t +c, passes through ¢ =20 and ¢ =22.5.
a,(20)* +5b,(20)+c, =517.35 (7
a,(22.5)> +b,(22.5)+ ¢, = 602.97 ®)

ast’ +bt +cg passes through ¢ =22.5 and ¢ = 30.
a;(22.5)* +b(22.5) + ¢, = 602.97 9)
a5(30)* +b,(30) +c; =901.67 (10)
2. Quadratic splines have continuous derivatives at the interior data points.
At t=10
2a,(10)+b, —2a,(10)—-b, =0 (11)
Att=15
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2a,(15)+b, —2a,(15) = b, =0

At t=20

2a,(20)+ b, —2a,(20)—b, =0

Att=225

2a,(22.5)+b, —2a5(22.5)-b, =0
3. Assuming the first spline a,t* +b,t +c¢, is linear,
a, =0
Combining Equation (1) —(15) in matrix form gives

0 0

N L
oOOOOOOOOg
—
(e

S O O O = O O O O o o o <o

— o O O

Solving the above 15 equations give the 15 unknowns as

Therefore, the splines are given by

1

S O O O O O O O O o o o o

0 0 o0
0 0 0
100 10 1
225 15 1
0 0 o0
0 0 0
0 0 o0
0 0 0
0 0 o0
0 0 0
-20 -1 0
30 1 0
0 0 0
0 0 0
0 0 0

v(t) = 22.704t,
=0.8888¢ +4.928¢ + 88.88,

=—0.1356t> +35.66¢t —141.61,
=1.6048¢> —33.956¢ + 554.55,
=0.20889¢ +28.86¢ —152.13,

At t=16s
v(16) = —0.1356(16)* +35.66(16) —141.61 = 394.24m/s

0
0
0
0
225
400

S O O O

0 0 0 0 O 0 0
0 0 0 0 O 0 0
0 0 0 0 O 0 0
0 O 0 0 O 0 0
15 1 0 0 O 0 0
20 1 0 0 0 0 0
0 0 400 20 1 0 0
0 0 50625 225 1 0 0
0 0 0 0 0 50625 225
0 0 0 0 0 900 30
0 O 0 0 O
-1 0 0 0 O
1 0 -40 -1 0 0 0
0 0 45 1 0 -45 -1
0 0 0 0 O 0 0
1|4 bi C;
110 22704 |0
2 10.8888 |4.928 88.88
3 1-0.1356 | 35.66 -141.61
4 11.6048 |—-33.956 | 554.55
5 10.20889 | 28.86 —-152.13
0<r<10
10t <15
15<¢<20
20t <225
22.5<t<30

SO O O O O = = O O O O O o o o

227.04
227.04
362.78
362.78
517.35
517.35
602.97
602.97
901.67

S O O O

(12)
(13)
(14)

(15)
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b) The distance covered by the rocket between 11 and 16 seconds can be calculated as
16

s(16)—s(11) = [v(t)dt
11
But since the splines are valid over different ranges, we need to break the integral accordingly as

v(t) = 0.8888¢> +4.928¢ +88.88, 10<¢<15
= —0.1356¢% +35.66t —141.61, 15<¢ <20

16 15

J.v(t)dt = j w(£)dt + lfv(t)dt

11 11

15 16
5(16)=s(11) = [ (0.8888¢ +4.928¢ +88.88)dr + [ (~0.13561" +35.661 — 141.61)dr
11 15

t3 l‘z 15
= {0.8888? + 4.9283 + 88.88t}

11

l‘3 l‘z 16
+ [— 0.1356?+ 35.663— 141.61t}

15

=1217.35+378.53 =1595.9 m
c) What is the acceleration at t =16 ?
d
a(16) = o V(o)
d d )
a(t)=—v(t) =—(-0.1356¢" +35.66t —141.61)
dt dt

=-0.2712t+35.66, 15<¢<20
a(16) =-0.2712(16) +35.66 =31.321m/s’
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Multiple-Choice Test Chapter 05.05 Spline Method of Interpolation

1. The following n data points, (xl, yl), (xz, yz) y e (xn, v, ), are given. For conducting
quadratic spline interpolation the x -data needs to be

(A) equally spaced

(B) placed in ascending or descending order of x -values

(C) integers

(D) positive
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2. In cubic spline interpolation,
(A) the first derivatives of the splines are continuous at the interior data points
(B) the second derivatives of the splines are continuous at the interior data points
(C) the first and the second derivatives of the splines are continuous at the interior data points
(D) the third derivatives of the splines are continuous at the interior data points

3. The following incomplete y vs. x data is given.
X (1|2 |4 6 7
Y511 |222?] 2?2272 | 32
The data is fit by quadratic spline interpolants given by
flx)=ax-1, 1<x<2
flx)=—2x*+14x-9, 2<x<4
f(x):bx2 +cex+d, 4<x<6
f(x)=25x*-303x+928, 6<x<7
where a, b, c,andd are constants. The value of ¢ is most nearly
(A) —=303.00 (B) —144.50 (C)0.0000 (D) 14.000

4. The following incomplete y vs. x data is given.

X |12 |4 6 7

Y IS ?2777 12227 | 32

The data is fit by quadratic spline interpolants given by
f(x)zax—l, 1<x<2,

f(x)=-2x"+14x-9, 2<x<4
fx)=bx’ +cex+d, 4<x<6
f(x)zex2+ﬁc+g, 6<x<7
where a, b, c, d, e, f,and g are constants. The value of Z—f at x = 2.6 most nearly is
x

(A) —144.50  (B) —4.0000 (C)3.6000 (D) 12.200

5. The following incomplete y vs. x data is given.
X |12 |4 6 7
YIS 2777 | 2227 | 32
The data is fit by quadratic spline interpolants given by
f(x)zax—l, 1<x<2,

fl(x)=-2x"+14x-9, 2<x<4
fx)=bx* +ex+d, 4<x<6
f(x)=25x> —303x+928, 6<x<7

35

where a, b, c,andd are constants. What is the value of j £(o)dx 2
1.5

(A)23.500 (B)25.667 (C)25.750 (D) 28.000
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6. A robot needs to follow a path that passes consecutively through six points as shown in the
figure. To find the shortest path that is also smooth you would recommend which of the
following? (bir robot ardisik 6 noktadan gegecektir. En kisa yolu bulabilmek i¢in asagidakilerden
hangisini tavsiye edersiniz?)

(A) Pass a fifth order polynomial through the data

(B) Pass linear splines through the data

(C) Pass quadratic splines through the data

(D) Regress the data to a second order polynomial

Path of a Robot

L4 *
6 *
* *
> 4 .
2 |
0 :
0 5 10 15

For a complete solution, refer to the links at the end of the book.
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Chapter 08.02 Euler’s Method for Ordinary Differential Equations
After reading this chapter, you should be able to:

develop Euler’s Method for solving ordinary differential equations,
determine how the step size affects the accuracy of a solution,
derive Euler’s formula from Taylor series, and

use Euler’s method to find approximate values of integrals.

=

What is Euler’s method?

Euler’s method is a numerical technique to solve ordinary differential equations of the form

dy

o= )y (0)=, (1)
So only first order ordinary differential equations can be solved by using Euler’s method. In
another chapter we will discuss how Euler’s method is used to solve higher order ordinary
differential equations or coupled (simultaneous) differential equations. How does one write a
first order differential equation in the above form?

Example 1
Rewrite
Y, 2y =13e,y(0)=5
dx
in
dy

e = (%), y(0) =y, form.
x

Solution

x
In this case

fley)=13¢" -2y

Example 2
Rewrite
e’ Y +x°y? =2sin(3x), y(0)=5
dx
in
dy
—=f(x,»), y(0) =y, form.
dx
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Solution
y dy 2.2 A _
e d—+x vy~ =2sin(3x), y(O)— 5
x

=5

dy 2sin(3x)— x>y’
dx e’ - 0)
In this case

: 2.2
f(x,y)z 251n(3);)y—x y

Derivation of Euler’s method
At x =0, we are given the value of y=y,. Letuscall x=0 as x,. Now since we know the

slope of y with respect to x, that is, f(x,y), then at x = x,, the slope is f(x,,v,). Both x,

and y, are known from the initial condition y(x,)=y,.

A

y

True value

yi,
Predicted

value

(x9570)

Y.

€ Stepsize, h

v
=

X

Figure 1 Graphical interpretation of the first step of Euler’s method.

So the slope at x = x,, as shown in Figure 1 is

Slope = Rise
Run
_N =N
X =X
= f(xmyo)
From here

Vi =DXo +f(x05yo)(x1 _xo)
Calling x, —x, the step size 1, we get
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y1=y0+f(x0,y0)h (2)
One can now use the value of y, (an approximate value of y at x =x,) to calculate y,, and that
would be the predicted value at x,, given by

Y2 =N +f(x1’y1)h

X, =x,+h
Based on the above equations, if we now know the value of y = y, at x,, then

Vi :yi+f(xi’yi)h (3)
This formula is known as Euler’s method and is illustrated graphically in Figure 2. In some
books, it is also called the Euler-Cauchy method.

A
y

True Value

vi+1, Predicted value

\\/ [()

Vi

«— ) ——>

Step size

v

Xi Xi+1

Figure 2 General graphical interpretation of Euler’s method.

Example 3

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K . Assuming
heat is lost only due to radiation, the differential equation for the temperature of the ball is given
by

% = 2.2067x1072(9* —81x10*), 6(0)=1200K

where € is in K and ¢ in seconds. Find the temperature at ¢ = 480 seconds using Euler’s
method. Assume a step size of 4 =240 seconds.

Solution

%:—2.2067“0-”( *-81x10°)
£(t.6)=-2.2067x10"2(0* ~81x10°)

Per Equation (3), Euler’s method reduces to
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0., =6, +f(ti’9i)h
Fori=0,¢,=0, 6, =1200
6, =6, +f(t0=‘90)h
=1200+ £(0,1200)x 240
= 1200+ (- 2.2067x1072(1200* —81x10* ))x 240
=1200 + (- 4.5579)x 240

=106.09K
6, is the approximate temperature at

t=t =ty +h=0+240 =240
6, = 6(240) ~ 106.09 K
For i=1, ¢, =240, 6, =106.09
0, =6, +f(t1791)h
=106.09 + £(240,106.09)x 240
=106.09 + (~2.2067x10"2(106.09* —81x10% ))x 240
=106.09 +(0.017595)x 240
=110.32K
0, is the approximate temperature at
1=t =t; +h =240+240 =480
0, = 6(480)~110.32K
Figure 3 compares the exact solution with the numerical solution from Euler’s method for the
step size of 7 =240.

1400 -
1200

1000 -
Exact Solution

800 -

600 -

Temperature, 6 (K)

400 -

200 +

0

0 100 200 300 400 500

Time, ¢ (sec)
Figure 3 Comparing the exact solution and Euler’s method.
The problem was solved again using a smaller step size. The results are given below in Table 1.
Table 1 Temperature at 480 seconds as a function of step size, 4.
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Figure 4 shows how the temperature varies as a function of time for different step sizes.

Step size, h | 0(480) | E, €, | %
480 -987.81 | 1635.4 | 252.54
240 110.32 | 537.26 | 82.964
120 546.77 | 100.80 | 15.566
60 614.97 | 32.607 | 5.0352
30 632.77 | 14.806 | 2.2864

1500
2 1000 | AN Exact solution
Se) g
. N - — ¢ =
g 500 - N - - ———= -
3 ~. h=120
: oo h=240_
& O T T \\\ T 1
g 100 200 300. 400 500
o ~
~ -500 - <
Time, # (sec) h=480 ~ .~
-1000 - Se
-1500 -

Figure 4 Comparison of Euler’s method with the exact solution
for different step sizes.

The values of the calculated temperature at ¢ =480s as a function of step size are plotted in

Figure 5.

800
.

D

Step size, & (s)

DO

9)
S 400
g
E 0
=
2
£ 400 -
F
-800 -
-1200

Figure 5 Effect of step size in Euler’s method.
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The exact solution of the ordinary differential equation is given by the solution of a non-linear
equation as

0.925931n Z‘ g 8(0) —1.8519tan™" (0.333 x1072 0): —-0.22067x107t —2.9282 4)
+
The solution to this nonlinear equation is
0 =647.57K

It can be seen that Euler’s method has large errors. This can be illustrated using the Taylor
series.

dy 1d’y 1d’y
Yinn =i +Ex,,y, (xi+1 _xi)+?! 2 . (xi+1 R )2 +§ I . (xi+1 — X )3 T (5)

1 \l 1 "
=y, + f(x, )X, —x;) +5f (xi’yi)(le —X; )2 +§f (xi’yi)(le —X; )3 +.. (6)
As you can see the first two terms of the Taylor series
Vi = Vi +f(xi’yi)h
are Euler’s method.
The true error in the approximation is given by

E = f();"yf)hz oL ();’y")ﬁ . ”

t

The true error hence is approximately proportional to the square of the step size, that is, as the
step size is halved, the true error gets approximately quartered. However from Table 1, we see
that as the step size gets halved, the true error only gets approximately halved. This is because
the true error, being proportioned to the square of the step size, is the local truncation error, that
is, error from one point to the next. The global truncation error is however proportional only to
the step size as the error keeps propagating from one point to another.

Can one solve a definite integral using numerical methods such as Euler’s method of
solving ordinary differential equations?
Let us suppose you want to find the integral of a function f(x)

I=if(x)dx.

Both fundamental theorems of calculus would be used to set up the problem so as to solve it as
an ordinary differential equation.
The first fundamental theorem of calculus states that if f is a continuous function in the interval

[a,b], and F is the antiderivative of £, then

[ (ke = F(5)- Fla)

The second fundamental theorem of calculus states that if f* is a continuous function in the open
interval D, and a is a point in the interval D, and if

Flx)= [ £le)r

then
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F'(x)= f(x)

at each pointin D.

b
Asked to find I f (x)dx, we can rewrite the integral as the solution of an ordinary differential

equation (here is where we are using the second fundamental theorem of calculus)
d
== 1(x) w@ =0,
dx

where then y(b) (here is where we are using the first fundamental theorem of calculus) will give

b
the value of the integral J. f (x)dx.

Example 4
Find an approximate value of

8

I6x3 dx

5
using Euler’s method of solving an ordinary differential equation. Use a step size of 4 =1.5.
Solution

8
Given I 6x’dx, we can rewrite the integral as the solution of an ordinary differential equation
5

a_ 6x°, ¥(5)=0
dx

8
where y(8) will give the value of the integral I 6xdx .
5

d
d_y =6x" = f(x,y), y(S)z 0
X
The Euler’s method equation is
Yin =V + f(xi:yi)h

Step 1
i=0,x,=5,y,=0
h=15
X, =x,+h
=5+1.5

=6.5

V1=DXo +f(x07J’0)h
=0+ /(50)x1.5
:O+(6><53)><1.5
=1125
= y(6.5)
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Step 2
i=1x =65,y =1125
X,=x+h
=65+1.5
=8
Yo =0 +f(x1:J’1)h
=1125+ f(6.5,1125)x1.5
~1125+(6x6.5°)x1.5
=3596.625
= y(8)
Hence

Tédex = ¥(8)~ ¥(5)

~3596.625-0
=3596.625
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